Lecture 2: Consistency Conditions and Interaction Potentials

Consider multi-time wave function \(\Psi(x_1, ..., x_N) \), where \(x_i = (x_i^0, x_i^1, x_i^2, x_i^3) = (x_i^0, x_i^1) \in \mathbb{R}^4 \)

\(N \) multi-time equations

\[i \frac{\partial \Psi}{\partial x_j^0} = H_j \Psi, \quad j = 1, ..., N \]

Recall example from lecture 1:

\[\Psi(x_1, x_2) = e^{-iH_1 x_1^0} e^{-iH_2 x_2^0} \Psi((0, x_1^1, 0, x_2^1), (0, x_2^1, 0, x_1^1)) \]

\[= e^{-iH_1 x_1^0} e^{-iH_2 x_2^0} \Psi((0, x_1^1, 0, x_2^1), (0, x_2^1, 0, x_1^1)) \]

\[\Rightarrow \text{need} \quad [e^{-iH_1 x_1^0}, e^{-iH_2 x_2^0}] = 0 \quad \iff \quad [H_1, H_2] = 0 \]

\[\Rightarrow \text{ok for non-interacting particles, i.e.,} \ H_j \text{ acts only on } j^{\text{th}} \text{ variable} \]

\((H_1 = H_1 \otimes 1_L, \ H_2 = 1_L \otimes H_2) \)

Common solution of \(N \) equations only for some \(H_j \)

\(\Rightarrow \) these have to satisfy certain conditions, like \([H_1, H_2] = 0 \) \n
Called **consistency conditions**

I. Rigorous Formulations of Consistency Condition

First, necessary condition for solutions

Consider solution to \(MT \) eqs \(\Psi: \mathbb{R}^4 \to \mathbb{C}^N \), \(\Psi \in C^2 \) (twice cont. differentiable)

Then

\[[i \frac{\partial}{\partial t_j} - H_j, i \frac{\partial}{\partial x_k} - H_k] \Psi = 0 \quad \forall j \neq k \]

\(\text{might act on all variables} \)
Now any given t_1, \ldots, t_n can be times for specifying initial data

\Rightarrow (as $0 \forall \Psi \Rightarrow [\ldots] = 0$ everywhere

Note: $[i \frac{\partial}{\partial x^i}, H_{\text{H}}, i \frac{\partial}{\partial x^j} - H_{\text{K}}] \Psi = 0$

$\Rightarrow \left[i \frac{\partial}{\partial x^i}, i \frac{\partial}{\partial x^j} - H_{\text{K}} \right] \Psi - \left[i \frac{\partial}{\partial x^j}, H_{\text{H}} \right] \Psi - \left[H_{\text{H}}, i \frac{\partial}{\partial x^j} \right] \Psi + \left[H_{\text{H}}, H_{\text{K}} \right] \Psi = 0$

$= 0 \left(\forall \epsilon \right) = i \left(\frac{\partial H_{\text{H}}}{\partial x^j} \right) \Psi - i (\frac{\partial H_{\text{K}}}{\partial x^i}) \Psi$

$\Rightarrow \left(i \frac{\partial H_{\text{H}}}{\partial x^j} - i \frac{\partial H_{\text{K}}}{\partial x^i} + [H_{\text{H}}, H_{\text{K}}] \right) \Psi = 0

Next, consider Hilbert space framework: $\Psi: \mathbb{R}^N \to \mathcal{H}$, e.g., $\mathcal{H} = L^2(\mathbb{R}^3, \mathbb{C}^K)$

Note: • not what we ultimately want: rather $\Psi: \mathbb{R}^N \to \mathbb{C}^K$

• but technically nice to handle set of spacelike configurations

Theorem: Let H_1, \ldots, H_n self-adjoint (and time-independent) on \mathcal{H}. Then

Solution to \mathcal{M} eqs. exists \forall initial $\Psi(t_1, \ldots, t_n, \ldots, t_n)$

\iff

$[H_i, H_k] = 0 \forall i \neq k$

Note: • sol. here means $\Psi(t_1, \ldots, t_n) = e^{-iH_{\text{H}}t} \Psi(t_1, \ldots, t_n, 0, t_{ij}, \ldots, t_{nn})$

• for unbounded H_j, $[H_j, H_k] = 0$ is def. via spectral projections

$\left(\left[A_j(H_j), A_k(H_k) \right] = 0 \forall A_j, A_k \in \mathbb{R} \right)$

Proof: $[e^{-iH_{\text{H}}t}, e^{-iH_{\text{H}}t}] = 0 \iff [H_i, H_k] = 0 \quad \square$
Next: time-dependent $H_t = H_j(t_1, \ldots, t_n)$

Theorem: Let $H: H_j : \mathbb{R}^N \rightarrow \mathcal{S}(\mathcal{H})$ be smooth ($\mathcal{S}(\mathcal{H})$-bounded operators $\mathcal{H} \rightarrow \mathcal{H}$). Then

Solution to eqs exists \forall initial $U(1, \bar{q}, t_1, \ldots, q, \bar{q}, \cdots)$

\[
\left[i \frac{\partial}{\partial x_j} - H_j, i \frac{\partial}{\partial t_k} - H_k \right] = 0 \quad \forall j \neq k
\]

Proof:

recall: $i \frac{d\psi}{dt} = H(t) \psi \quad H$ time-independent

\[
\Rightarrow \psi(t) = e^{-iHt} \psi(0) \quad \text{(H self-adjoint \iff $U(t)$ unitary propagator)}
\]

\[
\begin{aligned}
U(t) &= 1 + \sum_{n=1}^{\infty} \frac{(-iHt)^n}{n!} \\
&= 1 + \sum_{n=1}^{\infty} \frac{(-iHt)^n}{n!} \int_0^t \int_0^{T_1} \int_0^{T_2} \ldots \int_0^{T_n} e^{iH(T_1 + \ldots + T_n - T)} dT_1 dT_2 \ldots dT_n \ H^n
\end{aligned}
\]

now: $i \frac{d\psi}{dt} = H(t) \psi(t)$

\[
\Rightarrow \psi(t) = U(t, s) \psi(s) \quad \text{($H(t)$ self-adjoint $\forall t \iff$ $U(t, s)$ unitary)}
\]

Dyson series: $U(t, s) = 1 + \sum_{n=1}^{\infty} \frac{(-iH)^n}{n!} \int_0^t \int_0^{T_1} \int_0^{T_2} \ldots \int_0^{T_n} e^{iH(T_1 + \ldots + T_n - T)} dT_1 dT_2 \ldots dT_n \ H(T_1 + \ldots + T_n - T)
\]

\[
= \int \mathcal{D}H e^{iH(t-s)H}
\]

note: H bounded $\Rightarrow U(t, s)$ bounded

$U(t_1, s) U(s, t_2) = 1$, $U(t_1, s) U(s, t_2) = U(t_1, t_2)$
Similarly for \(\Psi \): take \(N=2 \) : \(\Psi(t_1, t_2) = U(t_{11}, s_1, t_2) \Psi(s_1, t_2) \)

with \(U(t_{11}, s_1, t_2) = 1 + \sum_{n=1}^{\infty} \frac{i^n}{n!} \int s_1 \cdots \int s_1 H_1(T_1, t_1) \cdots H_1(T_n, t_n) \) (Dyson series)

write \(\Psi(t_1, t_2) = U(t_{11}, s_1, t_2) U(s_1, t_2, s_2) \Psi(s_1, s_2) \)

\[= U(t_{11}, t_2, s_2) U(t_{11}, s_1, t_2) \Psi(s_1, s_2) \]

so: existence of solution \(\forall \Psi(s_1, s_2) \) (or \(\forall \Psi(0,0) \) by group property)

\[\iff \] \(U(t_{11}, s_1, t_2) U(s_1, t_2, s_2) = U(t_{11}, s_1, t_2) U(t_{11}, s_1, t_2) \forall s_1, s_2, t_1, t_2 \in \mathbb{R} \)

\[\begin{array}{c}
\text{now: consider} \\
\end{array} \]

Taylor expansion for \((s_1, s_2) \in \mathbb{C} \): \(H_1(s_1, s_2) = H_1(t_{11}, t_2) + \frac{\Delta t}{2} (s_2 - t_{11}) \frac{\partial H_1}{\partial s_2}(t_{11}, t_2) + o(\Delta t) \)

\begin{align*}
\lim_{\Delta t \to 0} \frac{o(\Delta t)}{\Delta t} & = 0 \\
= & U(t_{11}, t_{11} + \Delta t, t_2) = 1 - i \int s_1 \cdots \int s_1 H_1(T_1, t_1) \\
& \quad - \sum_{n=1}^{\infty} \frac{i^n}{n!} \int s_1 \cdots \int s_1 H_1(T_1, t_1) \cdots H_1(T_n, t_n) \) \(H_1(T_1, t_1) \cdots H_1(T_n, t_n) + O(\Delta t^3) \)
\end{align*}
Computation for other \(U \)'s yields:

\[
(\ast) \implies D = - i [H_\alpha H_\beta] - i \frac{\partial H_\alpha}{\partial t_\beta} + i \frac{\partial H_\beta}{\partial t_\alpha} \bigg|_{(t_\alpha, t_\beta)} dt_\alpha^2 + o(dt_\beta^2)
\]

Concatenation of \(\square \) proves statement \(\square \)

Note: different point of view:

- Define \(U_\gamma = \int e^{-i \int_5^5 H_\delta \, dt} \) for any path in \((t_1, \ldots, t_n)\)-plane

```
\[
\begin{array}{c}
\text{consistency} \iff \text{path-independence (fixed start/end points)}
\end{array}
\]
```

- Differential geometry language: base manifold \(\mathbb{R}^N \)
 - Fiber space \(\mathcal{H} \) (at each point)
 - Cross-section of vector bundle
 - Covariant derivative
 \[
 D_j := \frac{\partial}{\partial t_j} - i H_j
 \]
 - Parallel transport

\(\Rightarrow \) path-independence \(\iff \) curvature \(F_{jk} = 0 \)

Consistency condition from before
II. Interaction Potentials

Recall: \(\varphi(t, \vec{x}_1, \ldots, \vec{x}_n) = \mathcal{V}(t, \vec{x}_1, \ldots, \vec{x}_1) \)

and \(i \frac{\partial \varphi}{\partial t} = \left\{ \sum_{i=1}^{n} \mathcal{H}_j \mid t \right\} \varphi \)

In non-relativistic quantum mechanics, one often considers

\[
H = \sum_{i=1}^{n} \left(\mathcal{H}_j^{\text{free}} + W(t, \vec{x}_i) \right) + \sum_{i<j} V(\vec{x}_i, \vec{x}_j)
\]

e.g., Coulomb potential \(V(\vec{x}) = \frac{1}{|\vec{x}|} \)

\(\mathcal{H}_j^{\text{free}} = -\Delta_i, \mathcal{H}_j^{\text{Dirac}} \)

\(\Rightarrow \) obvious idea: choose partial Hamiltonians \(\mathcal{H}_j = \mathcal{H}_j^{\text{free}} + \mathcal{V}_j(\vec{x}_1, \ldots, \vec{x}_n) \)

\(\Rightarrow \) Def.: \(\mathcal{H}_j \) interacting \(\iff \) no gauge transformation gives \(\tilde{\mathcal{H}}_j = \mathcal{H}_j^{\text{free}} + \tilde{\mathcal{V}}_j(\vec{x}_j) \)

Theorem: Let \(\mathcal{H}_j^{\text{free}} = \text{free Dirac}, \mathcal{V}_j: \mathbb{R}^4 \to \mathbb{R} \) smooth. Then

Consistency Condition holds \(\iff \) \(\mathcal{H}_j \) not interacting

\(\Rightarrow \) interaction by potentials ruled out (for some class)
Proof: direct computation:

\[0 = [H_i, H_j] - i \frac{\partial H_i}{\partial t_i} + i \frac{\partial H_j}{\partial t_j} \]

\[= \left[H_i^{\text{free}}, V_j \right] + \left[V_i, H_j^{\text{free}} \right] - i \frac{\partial V_i}{\partial t_i} + i \frac{\partial V_j}{\partial t_j} \]

\[= -i \frac{3}{2} \sum_{a=1}^{3} \left(\alpha_i^{(a)} \frac{\partial V_i}{\partial x_i^a} - \alpha_j^{(a)} \frac{\partial V_j}{\partial x_j^a} \right) - i \left(\frac{\partial V_i}{\partial t_i} - \frac{\partial V_j}{\partial t_j} \right) \]

Note: \(\alpha_i^{(a)}, \alpha_j^{(a)} \) linearly independent

\[\Rightarrow V_j = V_j(\tilde{x}_j, t_1, \ldots, t_n) \]

Next: use \(\frac{\partial V_i}{\partial t_i} = \frac{\partial V_i}{\partial t_j} \) to conclude \(V_i = V_i(\tilde{x}_j, t_j) + \frac{\partial \Theta(t_1, \ldots, t_n)}{\partial t_j} \)

can be removed by gauge transformation

Generalizations:

- Consistency cond. only on \(S \)
- \(H_j^{\text{free}} = -i \frac{3}{2} \sum_{a=1}^{3} A_j^{(a)}(x_j) \frac{\partial}{\partial x_j^a} + B_j(\mathbf{x}_j) \), \(A_j^{(a)}, 1 \) lin. indep. \(A_j^{(a)} \) smooth
- \(V_j \) = matrix acting on \(j \)-th spin space
- \(H_j^{\text{free}} \) second order

Theorem (Deckert, Nickel 2016):

Let \(V_j \in C^1(\mathbb{R}^4_v \times S \rightarrow \mathbb{C}^{K \times L}) \)

- \(\exists \) sol. \(\Psi \in C^2 \) to MTEqs \(\forall \Psi(0, \mathbf{x}), (0, \tilde{\mathbf{x}}) \in C^0 \)

Then \(V_j \) is not Poincaré invariant

Note: \(\exists \) counter examples with non-trivial spin-dependence, see Exercise Sectin
Proof: sketch. Evaluate condition

- Use linear independence
- V_i spanned by H_2 and $f^{(5)}$
- Translation invariance \implies explicit expressions for V_i,V_ξ, which are not
 Lorentz-invariant

III. 8-range Interactions

Other idea: "point-like" interactions when $x_i = x_j$, possibly with boundary conditions on ∂S

\[\text{See Lecture 3} \]

Note: for free Dirac in 3+1 dim.:
\[i\frac{d\psi}{dt} = \sum_{j=1}^{N} \frac{H_{\text{Dirac}}}{\gamma} \psi \quad \text{on } (\mathbb{R}^3)^N \setminus D \]
\[D = \{ \text{some } x_i = x_j \} \]

but then one can show that some eq. holds on all of $(\mathbb{R}^3)^N$

\[\text{See Lecture 3: model in 1+1 dim.} \]

Other idea: introduce cutoff $\delta > 0$

- Group particles into families with $t_i = t_j$ \implies partition $P = \{ S_{i_1}, \ldots, S_N \}$, $S_\alpha \subset \{ 1, \ldots, N \}$

\[\implies S_{\delta,P} = \{ \text{with } S_\alpha : t_i = t_j, \forall \alpha \neq \beta, i \neq j, \text{ and } |x_i - x_j| > |t_i - t_j| + \delta \} \]

\[\implies \text{on } S_\delta = \bigcup_P S_{\delta,P} \]

\[\implies \text{MT eq.'s: on } S_{\delta,P} : i\frac{d\psi}{dt} = \left(\sum_{i \in S_\alpha} H_{\text{Dirac}}^{(\alpha)} + \sum_{i \neq j \in S_\alpha} W(x_i - x_j) \right) \psi \]
\[\kappa = 1, \ldots, L \]
\[W(x) = 0 \text{ for } |x| \geq \delta \]
Theorem: MT eqs consistent for smooth W.

Proof sketch: induction in L

1. **Start:** ok (one-time evolution)
2. **Step:** crucial $U(..., t_c)$ determined by initial data on $B_{t_{L-1}}(x_c)$
 then use consistency condition to show that the new U satisfies MT eqs.

References:

- Multi-Time Schrödinger Equations Cannot Contain Interaction Potentials
 S. Petrat and R. Tumulka
 arXiv:1308.1065

- Consistency of Multi-Time Dirac Equations with General Interaction Potentials
 D. A. Deckert and L. Nickel
 arXiv:1603.02538