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1 The Curved Born Rule

Definition. A Cauchy surface is a subset X of Minkowski space-time .# which is
intersected by every inextensible causal [i.e., non-spacelike| curve exactly once.

~ spacelike hypersurface [but can have kinks and lightlike tangent vectors|
Curved Born rule. If detectors along 3, then py, = |¢g|?, suitably interpreted.

For a Dirac wf ¢s(x;...xx) € (CH®V, I mean | - |* using, in each spin space, the basis
corresponding to the Lorentz frame tangent to ¥ [picture]. Equivalently,

[Ws(z1..an)]? = Ps(ar.an) th(21) - hn(zy) Ps(r.aon) . (1)

Curved collapse rule. If detectors found the configuration in A C ¥V, then vy,
collapses to 14 ¢¥s/||14 ¥s||.

Horizontal Born rule. If detectors along {x° = ¢}, then p; = ||

Horizontal collapse rule. If detectors found the configuration in A C (R?®)", then ¢,
collapses to @i = 14 ¢1/[|14 ¢4

Claim. HBR + HCR determine the statistics of outcomes of any experiment.

Reason. Any experiment [e.g., quantum measurement of spin| = unitary interaction
with apparatus, followed by reading display of apparatus [picture: time t after ] O

Corollary. If we assume HBR + HCR, then CBR and CCR are each either false or a
theorem. [That is, we need a proof of CBR and CCR.]

Theorem 1. [Lienert and Tumulka 2017 HBR + HCR + IL + PL = a version of
CBR.



e ILL and PL later

e Version: detection process = approximate > through horizontal pieces. Limit
e—0.

e We didn’t prove CCR b/c this detection process yields more info than whether
configuration in A = collapses more narrowly than to A.

e Consequence: py, can be expressed directly through multi-time wf .
e Consequence: ¥ on . has empirical significance.

e Valid for any N, Fock space, and several species. Presumably, also in curved
space-time.

Theorem 2. [Bloch 1934] N non-interacting particles, i0;, ¢ = Hy1. For each k, choose
T}, position measurement of particle k on {2° = T} [picture], result Q. Assume HBR
+ HCR. Then

2
P = Prob<Q1 € d3q1, QN E d3qN> = ‘@Z)(Tl,ql, T, qn) d3q1 . -d3qN.

Proof. Compute P using ¢, & = ®;, H =), H,. Wlog order so that T} <75 <
.-+ < Ty. Let P, = projection in .54, to position in d®q. ¢©(0) = 1(0...0).
Prob(Q1 € d*q) = ||Pie”" " (0)||* (HBR)

p(T1+) = Pre”"p(0)/]| -+ || (HCR)
Prob(Qs € d*q| Q1 € dqy) = ||[Poe™ " p(Ty+)||* (HBR)
p(Tot) = Poe M Mp(Ty4) /| -+ || (HCR)

P = || Pye s —Tw) . pyet(Ta=To) p o=iTi o(0) 2

Using e tHt = emithte=ithat ... o=iHNt and [Py, e *Hit] = 0 for j # k,
P = || Pye eI py T )2 2
= [Py T Py () ®)
= |¢(T1,Q1,~~-7TN,QN)|2dSQ1"'d3CJN (4)



as claimed. O

Corollary. Consider N (possibly interacting) particles in spacelike separated regions
Vi C ., detectors along spacelike . Suppose ¥ NV} is horizontal for every k. Assume
HBR + HCR. Then no interaction, and ps. = |¢x|?. [special case of CBR]

particle 1 particle 2 particle 3

Bohmian argument for CBR for 1 Dirac particle. According to Bohmian me-
chanics, particles have trajectories = integral curves of j* (causal) [picture]. Prob distr
of random integral curve C' such that

VE: Prob(CNY Cd’z) = j*(z)n,(z) d’o().

Particle gets detected at C' N X, and the presence of detectors on ¥ does not influence
C before 3 = Prob(detection in d®z) = Prob(C'N'Y C d®z in the absence of detectors)
= px(x) d®o(2). O

The argument does not work for N > 2 [b/c BM is nonlocal: detection of particle 1 at
x1 can change trajectory of particle 2 at spacelike separation.]

Proof of CBR from HBR + HCR for 1-particle Dirac eq in 141 dim.
Correspondence curved piece ¥, <> horizontal piece B,

Let Ay = {2° = (e} Npast(X).
Prob(detect in By|prior collapses) = flux(j, By|collapses) = flux(j, ¥|collapses)

_ ﬂux(jwlf‘za 1) _ flux(jy, Xo)
~ Prob(prior detection)  Prob(prior detection)

Thus, Prob(detect in By) = flux(jy,, X¢). O



2 Theorem 1 and Hypersurface Evolution

Want Thm 1 for every MT evolution. [MT eqs provide simple formulation of concrete
models, but it is hard to say what an arbitrary MT evolution is. Better:]

Formalization: “hypersurface evolution.” Def: (i)—(vi) below.
() VS :
(i) VX,%: US : s — Ay unitary such that Uy Uy = Uy and Uy = Iy
o Let I'(X) = {¢g C ¥ : #q < oo} space of unordered configurations.

e A PVM (projection-valued measure) on a set S associates with A C .S a projection
J # k (“o-additive”) and P(S) = I. Examples:
— On 2 = L*(S), set P(A)y = 149.

— Spectral theorem: Self-adjoint [operator] T' is associated w/ PVM P on R.
For A C R, P(A) = proj to span(generalized eigenvectors with generalized
eigenvalues in A).

(iii) VX : PVM Py on I'(Y) acting on J&: (configuration observable)

— Example: bosonic Fock space of L*(X) is L*(T'(X)), equipped with PVM on
(%)

— Example: bosonic/fermionic Fock space of L?(3, CK) also automatically with
PVM on I'(%)

— Example: Fock; ® Focky
— N-particle sector of J&; is range of P(I'y (X))

— formalizes |wg(x1...:cN)’2 do(xy) - dPo(zy) = ||P2(d3.1'1 - dBry) ngQ
(iv) absolutely continuous: Ps(A) = 0 for every set A of volume 0
(v) unique vacuum: dim(0-particle sector) = 1

(vi) Factorization: If A, B C ¥ are disjoint, then s p = 4 ® A3 and Payp =
Py ® Pg.

— Example: True of Fock spaces:

— I'(Au B) =T'(A) x I'(B), therefore

— Fock(L?(A U B)) = Fock(L*(A)) ® Fock(L*(B)) and
— Paup = P4 ® Pp for Fock spaces.



3 Interaction locality

(IL): VS, % and AC SN UF =1, @ Us, ;.
Last factor does not depend on A except through ¥\ A and X'\ A.

A />/A

>

e Expresses absence of interaction terms between spacelike separated regions.

Presumably valid in our universe.

IL <& Bell locality = no influences between events in spacelike separated regions.

Bell’s theorem: Bell locality is violated.

Presumably, IL. <= no superluminal signaling

4 Propagation locality
For R C ¥ define
V(R)={qeTl(¥):qC R}. (5)

Definition. s, € J&; is concentrated in A C 3 iff 15, € range Px(V(A)). Equivalently,
supps(¢s) C A.

Definition. VX, Y and A C X, the grown set is
Gr(A,Y') = [future(A) U past(A)] N X'

Sr(A, )




Propagation locality (PL): Whenever vy is concentrated in A C X, then vy is
concentrated in Gr(A4,X').

Examples of IL and PL

Free MT Dirac evolution

e MT Dirac in 1+1 dim w/ zero-range interaction [Lienert 2015]

MT em-ab model

e MT Dirac in 141 dim w/ IBC [Lienert and Nickel 2018]

Theorem 1 again. HBR + HCR + IL + PL = CBR
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