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1 The Curved Born Rule

Definition. A Cauchy surface is a subset Σ of Minkowski space-time M which is
intersected by every inextensible causal [i.e., non-spacelike] curve exactly once.

≈ spacelike hypersurface [but can have kinks and lightlike tangent vectors]

Curved Born rule. If detectors along Σ, then ρΣ = |ψΣ|2, suitably interpreted.

For a Dirac wf ψΣ(x1...xN) ∈ (C4)⊗N , I mean | · |2 using, in each spin space, the basis
corresponding to the Lorentz frame tangent to Σ [picture]. Equivalently,

|ψΣ(x1...xN)|2 = ψΣ(x1...xN)n/1(x1) · · ·n/N(xN)ψΣ(x1...xN) . (1)

Curved collapse rule. If detectors found the configuration in A ⊆ ΣN , then ψΣ

collapses to 1A ψΣ/‖1A ψΣ‖.

Horizontal Born rule. If detectors along {x0 = t}, then ρt = |ϕt|2.

Horizontal collapse rule. If detectors found the configuration in A ⊆ (R3)N , then ϕt
collapses to ϕt+ = 1A ϕt/‖1A ϕt‖.

Claim. HBR + HCR determine the statistics of outcomes of any experiment.

Reason. Any experiment [e.g., quantum measurement of spin] = unitary interaction
with apparatus, followed by reading display of apparatus [picture: time t after Σ] �

Corollary. If we assume HBR + HCR, then CBR and CCR are each either false or a
theorem. [That is, we need a proof of CBR and CCR.]

Theorem 1. [Lienert and Tumulka 2017] HBR + HCR + IL + PL ⇒ a version of
CBR.
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• IL and PL later

• Version: detection process = approximate Σ through horizontal pieces. Limit
ε→ 0.

• We didn’t prove CCR b/c this detection process yields more info than whether
configuration in A ⇒ collapses more narrowly than to A.

• Consequence: ρΣ can be expressed directly through multi-time wf ψ.

• Consequence: ψ on S has empirical significance.

• Valid for any N , Fock space, and several species. Presumably, also in curved
space-time.

Theorem 2. [Bloch 1934] N non-interacting particles, i∂tkψ = Hkψ. For each k, choose
Tk, position measurement of particle k on {x0 = Tk} [picture], result Qk. Assume HBR
+ HCR. Then

P := Prob
(
Q1 ∈ d3q1, . . . , QN ∈ d3qN

)
=
∣∣∣ψ(T1, q1, . . . , TN , qN)

∣∣∣2d3q1 · · · d3qN .

Proof. Compute P using ϕ, H = ⊗kHk, H =
∑

kHk. Wlog order so that T1 ≤ T2 ≤
· · · ≤ TN . Let Pk = projection in Hk to position in d3qk. ϕ(0) = ψ(0...0).
Prob(Q1 ∈ d3q1) = ‖P1e

−iHT1ϕ(0)‖2 (HBR)
ϕ(T1+) = P1e

−iHT1ϕ(0)/‖ · · · ‖ (HCR)
Prob(Q2 ∈ d3q2|Q1 ∈ d3q1) = ‖P2e

−iH(T2−T1)ϕ(T1+)‖2 (HBR)
ϕ(T2+) = P2e

−iH(T2−T1)ϕ(T1+)/‖ · · · ‖ (HCR)
...
P = ‖PNe−iH(TN−TN−1) · · ·P2e

−iH(T2−T1)P1e
−iHT1ϕ(0)‖2

Using e−iHt = e−iH1te−iH2t · · · e−iHN t and [Pk, e
−iHjt] = 0 for j 6= k,

P = ‖PNe−iHN (TN−TN−1) · · ·P1e
−iHT1ϕ(0)‖2 (2)

= ‖PNe−iHNTN · · ·P1e
−iH1T1ϕ(0)‖2 (3)

= |ψ(T1, q1, . . . , TN , qN)|2 d3q1 · · · d3qN (4)
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as claimed. �

Corollary. Consider N (possibly interacting) particles in spacelike separated regions
Vk ⊂M , detectors along spacelike Σ. Suppose Σ∩Vk is horizontal for every k. Assume
HBR + HCR. Then no interaction, and ρΣ = |ψΣ|2. [special case of CBR]

Bohmian argument for CBR for 1 Dirac particle. According to Bohmian me-
chanics, particles have trajectories = integral curves of jµ (causal) [picture]. Prob distr
of random integral curve C such that

∀Σ : Prob
(
C ∩ Σ ⊂ d3x

)
= jµ(x)nµ(x) d3σ(x).

Particle gets detected at C ∩ Σ, and the presence of detectors on Σ does not influence
C before Σ ⇒ Prob(detection in d3x) = Prob(C ∩Σ ⊂ d3x in the absence of detectors)
= ρΣ(x) d3σ(x). �

The argument does not work for N ≥ 2 [b/c BM is nonlocal: detection of particle 1 at
x1 can change trajectory of particle 2 at spacelike separation.]

Proof of CBR from HBR + HCR for 1-particle Dirac eq in 1+1 dim.
Correspondence curved piece Σ` ↔ horizontal piece B`

Let A` = {x0 = `ε} ∩ past(Σ).
Prob(detect in B`|prior collapses) = flux(j, B`|collapses) = flux(j, Σ`|collapses)

=
flux(jψ1A`−1

,Σ`)

Prob(prior detection)
=

flux(jψ,Σ`)

Prob(prior detection)

Thus, Prob(detect in B`) = flux(jψ, Σ`). �
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2 Theorem 1 and Hypersurface Evolution

Want Thm 1 for every MT evolution. [MT eqs provide simple formulation of concrete
models, but it is hard to say what an arbitrary MT evolution is. Better:]

Formalization: “hypersurface evolution.” Def: (i)–(vi) below.

(i) ∀Σ : HΣ

(ii) ∀Σ,Σ′ : UΣ′
Σ : HΣ →HΣ′ unitary such that UΣ′′

Σ′ U
Σ′
Σ = UΣ′′

Σ and UΣ
Σ = IΣ

• Let Γ(Σ) = {q ⊂ Σ : #q <∞} space of unordered configurations.

• A PVM (projection-valued measure) on a set S associates with A ⊆ S a projection
P (A) in H such that P (A1 ∪ A2 ∪ ...) = P (A1) + P (A2) + . . . if Aj ∩ Ak = ∅ for
j 6= k (“σ-additive”) and P (S) = I. Examples:

– On H = L2(S), set P (A)ψ = 1A ψ.

– Spectral theorem: Self-adjoint [operator] T is associated w/ PVM P on R.
For A ⊆ R, P (A) = proj to span(generalized eigenvectors with generalized
eigenvalues in A).

(iii) ∀Σ : PVM PΣ on Γ(Σ) acting on HΣ (configuration observable)

– Example: bosonic Fock space of L2(Σ) is L2(Γ(Σ)), equipped with PVM on
Γ(Σ)

– Example: bosonic/fermionic Fock space of L2(Σ,CK) also automatically with
PVM on Γ(Σ)

– Example: Fock1 ⊗ Fock2

– N -particle sector of HΣ is range of P (ΓN(Σ))

– formalizes
∣∣ψΣ(x1...xN)

∣∣2 d3σ(x1) · · · d3σ(xN) =
∥∥PΣ(d3x1 · · · d3xN)ψΣ

∥∥2

(iv) absolutely continuous: PΣ(A) = 0 for every set A of volume 0

(v) unique vacuum: dim(0-particle sector) = 1

(vi) Factorization: If A,B ⊆ Σ are disjoint, then HA∪B = HA ⊗HB and PA∪B =
PA ⊗ PB.

– Example: True of Fock spaces:

– Γ(A ∪B) = Γ(A)× Γ(B), therefore

– Fock(L2(A ∪B)) = Fock(L2(A)) ⊗ Fock(L2(B)) and

– PA∪B = PA ⊗ PB for Fock spaces.
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3 Interaction locality

(IL): ∀Σ,Σ′ and A ⊆ Σ ∩ Σ′: UΣ′
Σ = IA ⊗ UΣ′\A

Σ\A .

Last factor does not depend on A except through Σ \ A and Σ′ \ A.

• Expresses absence of interaction terms between spacelike separated regions.

• Presumably valid in our universe.

• IL 6⇔ Bell locality = no influences between events in spacelike separated regions.

• Bell’s theorem: Bell locality is violated.

• Presumably, IL ⇐ no superluminal signaling

4 Propagation locality

For R ⊆ Σ define

∀(R) = {q ∈ Γ(Σ) : q ⊆ R}. (5)

Definition. ψΣ ∈HΣ is concentrated in A ⊆ Σ iff ψΣ ∈ rangePΣ(∀(A)). Equivalently,
supp3(ψΣ) ⊆ A.

Definition. ∀Σ,Σ′ and A ⊆ Σ, the grown set is

Gr(A,Σ′) =
[
future(A) ∪ past(A)

]
∩ Σ′ .
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Propagation locality (PL): Whenever ψΣ is concentrated in A ⊆ Σ, then ψΣ′ is
concentrated in Gr(A,Σ′).

Examples of IL and PL

• Free MT Dirac evolution

• MT Dirac in 1+1 dim w/ zero-range interaction [Lienert 2015]

• MT em-ab model

• MT Dirac in 1+1 dim w/ IBC [Lienert and Nickel 2018]

Theorem 1 again. HBR + HCR + IL + PL ⇒ CBR
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