Spring School on Multi-Time Wave Functions Lecture 6: Born's Rule for Arbitrary Cauchy Surfaces

Roderich Tumulka

April 12, 2019

1 The Curved Born Rule

Definition. A Cauchy surface is a subset Σ of Minkowski space-time \mathcal{M} which is intersected by every inextensible causal [i.e., non-spacelike] curve exactly once.

 \approx spacelike hypersurface [but can have kinks and lightlike tangent vectors]

Curved Born rule. If detectors along Σ , then $\rho_{\Sigma} = |\psi_{\Sigma}|^2$, suitably interpreted.

For a Dirac wf $\psi_{\Sigma}(x_1...x_N) \in (\mathbb{C}^4)^{\otimes N}$, I mean $|\cdot|^2$ using, in each spin space, the basis corresponding to the Lorentz frame tangent to Σ [picture]. Equivalently,

$$|\psi_{\Sigma}(x_1...x_N)|^2 = \overline{\psi_{\Sigma}}(x_1...x_N) \, \not\!\!/_1(x_1) \cdots \not\!\!/_N(x_N) \, \psi_{\Sigma}(x_1...x_N) \,. \tag{1}$$

Curved collapse rule. If detectors found the configuration in $A \subseteq \Sigma^N$, then ψ_{Σ} collapses to $1_A \psi_{\Sigma} / || 1_A \psi_{\Sigma} ||$.

Horizontal Born rule. If detectors along $\{x^0 = t\}$, then $\rho_t = |\varphi_t|^2$.

Horizontal collapse rule. If detectors found the configuration in $A \subseteq (\mathbb{R}^3)^N$, then φ_t collapses to $\varphi_{t+} = 1_A \varphi_t / || 1_A \varphi_t ||$.

Claim. HBR + HCR determine the statistics of outcomes of *any* experiment.

Reason. Any experiment [e.g., quantum measurement of spin] = unitary interaction with apparatus, followed by reading display of apparatus [picture: time t after Σ]

Corollary. If we assume HBR + HCR, then CBR and CCR are each either false or a theorem. [That is, we need a proof of CBR and CCR.]

Theorem 1. [Lienert and Tumulka 2017] HBR + HCR + IL + PL \Rightarrow a version of CBR.

- IL and PL later
- Version: detection process = approximate Σ through horizontal pieces. Limit $\varepsilon \to 0$.
- We didn't prove CCR b/c this detection process yields more info than whether configuration in $A \Rightarrow$ collapses more narrowly than to A.
- Consequence: ρ_{Σ} can be expressed directly through multi-time wf ψ .
- Consequence: ψ on \mathscr{S} has empirical significance.
- Valid for any N, Fock space, and several species. Presumably, also in curved space-time.

Theorem 2. [Bloch 1934] N non-interacting particles, $i\partial_{t_k}\psi = H_k\psi$. For each k, choose T_k , position measurement of particle k on $\{x^0 = T_k\}$ [picture], result Q_k . Assume HBR + HCR. Then

$$P := \operatorname{Prob} \left(Q_1 \in d^3 q_1, \dots, Q_N \in d^3 q_N \right) = \left| \psi(T_1, q_1, \dots, T_N, q_N) \right|^2 d^3 q_1 \cdots d^3 q_N.$$

Proof. Compute *P* using φ , $\mathscr{H} = \bigotimes_k \mathscr{H}_k$, $H = \sum_k H_k$. Wlog order so that $T_1 \leq T_2 \leq \cdots \leq T_N$. Let P_k = projection in \mathscr{H}_k to position in d^3q_k . $\varphi(0) = \psi(0...0)$. Prob $(Q_1 \in d^3q_1) = \|P_1 e^{-iHT_1}\varphi(0)\|^2$ (HBR) $\varphi(T_1+) = P_1 e^{-iHT_1}\varphi(0)/\|\cdots\|$ (HCR) Prob $(Q_2 \in d^3q_2|Q_1 \in d^3q_1) = \|P_2 e^{-iH(T_2-T_1)}\varphi(T_1+)\|^2$ (HBR) $\varphi(T_2+) = P_2 e^{-iH(T_2-T_1)}\varphi(T_1+)/\|\cdots\|$ (HCR) \vdots $P = \|P_N e^{-iH(T_N-T_{N-1})}\cdots P_2 e^{-iH(T_2-T_1)}P_1 e^{-iHT_1}\varphi(0)\|^2$ Using $e^{-iHt} = e^{-iH_1t} e^{-iH_2t}\cdots e^{-iH_Nt}$ and $[P_k, e^{-iH_jt}] = 0$ for $j \neq k$, $P = \|P_N e^{-iH_N(T_N-T_{N-1})}\cdots P_1 e^{-iHT_1}\varphi(0)\|^2$ (2)

$$= \|P_N e^{-iH_N T_N} \cdots P_1 e^{-iH_1 T_1} \varphi(0)\|^2$$
(3)

$$= |\psi(T_1, q_1, \dots, T_N, q_N)|^2 d^3 q_1 \cdots d^3 q_N$$
(4)

as claimed.

Corollary. Consider N (possibly interacting) particles in spacelike separated regions $V_k \subset \mathcal{M}$, detectors along spacelike Σ . Suppose $\Sigma \cap V_k$ is horizontal for every k. Assume HBR + HCR. Then no interaction, and $\rho_{\Sigma} = |\psi_{\Sigma}|^2$. [special case of CBR]

Bohmian argument for CBR for 1 Dirac particle. According to Bohmian mechanics, particles have trajectories = integral curves of j^{μ} (causal) [picture]. Prob distr of random integral curve C such that

$$\forall \Sigma: \operatorname{Prob}(C \cap \Sigma \subset d^3x) = j^{\mu}(x) \, n_{\mu}(x) \, d^3\sigma(x).$$

Particle gets detected at $C \cap \Sigma$, and the presence of detectors on Σ does not influence C before $\Sigma \Rightarrow \operatorname{Prob}(\operatorname{detection} \operatorname{in} d^3 x) = \operatorname{Prob}(C \cap \Sigma \subset d^3 x)$ in the absence of detectors) = $\rho_{\Sigma}(x) d^3 \sigma(x)$.

The argument does not work for $N \ge 2$ [b/c BM is nonlocal: detection of particle 1 at x_1 can change trajectory of particle 2 at spacelike separation.]

Proof of CBR from HBR + HCR for 1-particle Dirac eq in 1+1 dim. Correspondence curved piece $\Sigma_{\ell} \leftrightarrow$ horizontal piece B_{ℓ}

Let $A_{\ell} = \{x^0 = \ell \varepsilon\} \cap \text{past}(\Sigma)$. Prob(detect in $B_{\ell}|\text{prior collapses}) = \text{flux}(j, B_{\ell}|\text{collapses}) = \text{flux}(j, \Sigma_{\ell}|\text{collapses})$

$$= \frac{\operatorname{flux}(j_{\psi 1_{A_{\ell-1}}}, \Sigma_{\ell})}{\operatorname{Prob}(\operatorname{prior detection})} = \frac{\operatorname{flux}(j_{\psi}, \Sigma_{\ell})}{\operatorname{Prob}(\operatorname{prior detection})}$$

Thus, Prob(detect in B_{ℓ}) = flux $(j_{\psi}, \Sigma_{\ell})$.

2 Theorem 1 and Hypersurface Evolution

Want Thm 1 for *every* MT evolution. [MT eqs provide simple formulation of concrete models, but it is hard to say what an *arbitrary* MT evolution is. Better:]

Formalization: "hypersurface evolution." Def: (i)–(vi) below.

- (i) $\forall \Sigma : \mathscr{H}_{\Sigma}$
- (ii) $\forall \Sigma, \Sigma': U_{\Sigma}^{\Sigma'}: \mathscr{H}_{\Sigma} \to \mathscr{H}_{\Sigma'}$ unitary such that $U_{\Sigma'}^{\Sigma''}U_{\Sigma}^{\Sigma'} = U_{\Sigma}^{\Sigma''}$ and $U_{\Sigma}^{\Sigma} = I_{\Sigma}$
 - Let $\Gamma(\Sigma) = \{q \subset \Sigma : \#q < \infty\}$ space of unordered configurations.
 - A PVM (projection-valued measure) on a set S associates with $A \subseteq S$ a projection P(A) in \mathscr{H} such that $P(A_1 \cup A_2 \cup ...) = P(A_1) + P(A_2) + ...$ if $A_j \cap A_k = \emptyset$ for $j \neq k$ (" σ -additive") and P(S) = I. Examples:
 - On $\mathscr{H} = L^2(S)$, set $P(A)\psi = 1_A \psi$.
 - Spectral theorem: Self-adjoint [operator] T is associated w/ PVM P on \mathbb{R} . For $A \subseteq \mathbb{R}$, P(A) = proj to span(generalized eigenvectors with generalized eigenvalues in A).
- (iii) $\forall \Sigma$: PVM P_{Σ} on $\Gamma(\Sigma)$ acting on \mathscr{H}_{Σ} (configuration observable)
 - Example: bosonic Fock space of $L^2(\Sigma)$ is $L^2(\Gamma(\Sigma))$, equipped with PVM on $\Gamma(\Sigma)$
 - Example: bosonic/fermionic Fock space of $L^2(\Sigma, \mathbb{C}^K)$ also automatically with PVM on $\Gamma(\Sigma)$
 - Example: $Fock_1 \otimes Fock_2$
 - N-particle sector of \mathscr{H}_{Σ} is range of $P(\Gamma_N(\Sigma))$
 - formalizes $|\psi_{\Sigma}(x_1...x_N)|^2 d^3\sigma(x_1)\cdots d^3\sigma(x_N) = ||P_{\Sigma}(d^3x_1\cdots d^3x_N)\psi_{\Sigma}||^2$
- (iv) absolutely continuous: $P_{\Sigma}(A) = 0$ for every set A of volume 0
- (v) unique vacuum: $\dim(0\text{-particle sector}) = 1$
- (vi) Factorization: If $A, B \subseteq \Sigma$ are disjoint, then $\mathscr{H}_{A \cup B} = \mathscr{H}_A \otimes \mathscr{H}_B$ and $P_{A \cup B} = P_A \otimes P_B$.
 - Example: True of Fock spaces:
 - $-\Gamma(A \cup B) = \Gamma(A) \times \Gamma(B)$, therefore
 - Fock $(L^2(A \cup B))$ = Fock $(L^2(A))$ \otimes Fock $(L^2(B))$ and
 - $-P_{A\cup B} = P_A \otimes P_B$ for Fock spaces.

3 Interaction locality

(IL): $\forall \Sigma, \Sigma' \text{ and } A \subseteq \Sigma \cap \Sigma': \quad U_{\Sigma}^{\Sigma'} = I_A \otimes U_{\Sigma \setminus A}^{\Sigma' \setminus A}.$ Last factor does not depend on A except through $\Sigma \setminus A$ and $\Sigma' \setminus A$.

- Expresses absence of interaction terms between spacelike separated regions.
- Presumably valid in our universe.
- IL \Leftrightarrow Bell locality = no influences between events in spacelike separated regions.
- Bell's theorem: Bell locality is violated.
- Presumably, IL \Leftarrow no superluminal signaling

4 Propagation locality

For $R \subseteq \Sigma$ define

$$\forall (R) = \{ q \in \Gamma(\Sigma) : q \subseteq R \}.$$
(5)

Definition. $\psi_{\Sigma} \in \mathscr{H}_{\Sigma}$ is concentrated in $A \subseteq \Sigma$ iff $\psi_{\Sigma} \in \operatorname{range} P_{\Sigma}(\forall(A))$. Equivalently, $\operatorname{supp}_{3}(\psi_{\Sigma}) \subseteq A$.

Definition. $\forall \Sigma, \Sigma'$ and $A \subseteq \Sigma$, the grown set is

$$\operatorname{Gr}(A, \Sigma') = |\operatorname{future}(A) \cup \operatorname{past}(A)| \cap \Sigma'$$
.

Propagation locality (PL): Whenever ψ_{Σ} is concentrated in $A \subseteq \Sigma$, then $\psi_{\Sigma'}$ is concentrated in $Gr(A, \Sigma')$.

Examples of IL and PL

- Free MT Dirac evolution
- MT Dirac in 1+1 dim w/ zero-range interaction [Lienert 2015]
- MT em-ab model
- MT Dirac in 1+1 dim w/ IBC [Lienert and Nickel 2018]

Theorem 1 again. $HBR + HCR + IL + PL \Rightarrow CBR$