U Tübingen

Exercises for the Course Modular forms Prof. Dr. A. v. Pippich

Exercise class: 22.11.18

Exercise sheet 3

Let $\Gamma \subseteq SL_2(\mathbb{Z})$ be a subgroup. A fundamental domain for Γ is a connected subset $\mathcal{F}_{\Gamma} \subseteq \mathbb{H}^*$ such that there is a bijection $\mathcal{F}_{\Gamma} \cong \Gamma \setminus \mathbb{H}^*$. Note that this definition slightly differs from the definition given in class.

Exercise 1

(a) Prove that

$$\begin{aligned} \mathcal{F}_{\mathrm{SL}_2(\mathbb{Z})} &:= \{ \tau \in \mathbb{H} \, | \, |\tau| > 1, -1/2 \le \mathrm{Re}(\tau) < 1/2 \} \cup \\ \{ \tau \in \mathbb{H} \, | \, |\tau| = 1, -1/2 \le \mathrm{Re}(\tau) \le 0 \} \cup \{ \infty \} \end{aligned}$$

is a fundamental domain for $SL_2(\mathbb{Z})$.

(b) Prove that, for any $\gamma \in SL_2(\mathbb{Z})$, $\gamma \mathcal{F}_{SL_2(\mathbb{Z})}$ is a fundamental domain for $SL_2(\mathbb{Z})$. Draw $\gamma \mathcal{F}_{SL_2(\mathbb{Z})}$ for

$$\gamma \in \left\{ E, T, TS, ST^{-1}S, S, ST, STS, T^{-1}S, T^{-1} \right\},\$$

where

$$E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Exercise 2

For $N \in \mathbb{N}$, N > 1, we define the subgroup

$$\Gamma_0(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \middle| c \equiv 0 \mod N \right\}$$

of $SL_2(\mathbb{Z})$. Let E, S, and T be as in Exercise 1 and let p be a prime number. For $j \in \mathbb{N}$, $0 \leq j \leq p$, we set

$$\alpha_j := \begin{cases} ST^j, & \text{if } 0 \le j \le p-1; \\ E, & \text{if } j = p. \end{cases}$$

(a) Prove that

$$\operatorname{SL}_2(\mathbb{Z}) = \bigcup_{j=0}^p \alpha_j^{-1} \Gamma_0(p) = \bigcup_{j=0}^p \Gamma_0(p) \alpha_j.$$

(b) Using (a), conclude that there is a fundamental domain $\mathcal{F}_{\Gamma_0(p)}$ for $\Gamma_0(p)$ satisfying

$$\mathcal{F}_{\Gamma_0(p)} \subseteq \bigcup_{j=0}^p \alpha_j \mathcal{F}_{\mathrm{SL}_2(\mathbb{Z})}.$$
 (1)

Can one replace " \subseteq " by "=" in (1)?

- (c) Draw the fundamental domain $\mathcal{F}_{\Gamma_0(2)}$ and determine all the cusps of $\Gamma_0(2)$, i.e., the orbits $\Gamma_0(2)[r:s]$ with $[r:s] \in \mathbb{P}^1(\mathbb{Q})$.
- (d) Find a fundamental domain drawer in the internet and plot the fundamental domain $\mathcal{F}_{\Gamma_0(N)}$ for different N.