Exercises for the Course
\section*{Modular forms}
Prof. Dr. A. v. Pippich
Exercise class: 26.10.18

Exercise sheet 1

Exercise 1

For $\gamma=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{R})$ and $\tau \in \mathbb{H}=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$, we define

$$
\begin{equation*}
\gamma \tau:=\frac{a \tau+b}{c \tau+d} . \tag{1}
\end{equation*}
$$

(a) Show that

$$
\operatorname{Im}(\gamma \tau)=\frac{\operatorname{Im}(\tau) \operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)}{|c \tau+d|^{2}} .
$$

(b) Show that (1) defines an action of $\mathrm{SL}_{2}(\mathbb{R})$ on \mathbb{H}, and an action of $\mathrm{GL}_{2}^{+}(\mathbb{R})$ on \mathbb{H}.
(c) Show that $\mathrm{SL}_{2}(\mathbb{R})$ acts transitively on \mathbb{H}. To do this, determine for every $z \in \mathbb{H}$ an element $\gamma \in \mathrm{SL}_{2}(\mathbb{R})$ with $\gamma i=z$.

Exercise 2

Let $\mathrm{SL}_{2}(\mathbb{Z}):=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{Z}, a d-b c=1\right\}$ be the modular group. Let

$$
E:=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad S:=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad T:=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) .
$$

(a) Show the identities

$$
\begin{aligned}
S^{2} & =-E ; \\
T^{n} & =\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right) \quad(n \in \mathbb{Z}) ; \\
(S T)^{3} & =(T S)^{3}=-E .
\end{aligned}
$$

(b) Express the matrix

$$
\left(\begin{array}{cc}
4 & 9 \\
11 & 25
\end{array}\right)
$$

as word in S, S^{-1}, T and T^{-1}.
(c) Let Γ be the subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$ generated by S and T. Let $\alpha=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be a matrix in $\mathrm{SL}_{2}(\mathbb{Z})$. Use the identity

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) T^{n}=\left(\begin{array}{cc}
a & b^{\prime} \\
c & n c+d
\end{array}\right)
$$

to show that unless $c=0$, some matrix $\alpha \gamma$ with $\gamma \in \Gamma$ has bottom row $\left(c, d^{\prime}\right)$ with $\left|d^{\prime}\right| \leq|c| / 2$. Use the identity

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) S=\left(\begin{array}{ll}
b & -a \\
d & -c
\end{array}\right)
$$

to show that this process can be iterated until some matrix $\alpha \gamma$ with $\gamma \in \Gamma$ has bottom row $(0, \star)$. Show that in fact the bottom row is $(0, \pm 1)$, and since $S^{2}=-E$ it can be taken to be $(0,1)$. Show that therefore $\alpha \gamma \in \Gamma$ and so $\alpha \in \Gamma$. Thus Γ is all of $\mathrm{SL}_{2}(\mathbb{Z})$, that is, the matrices S und T generate the group $\mathrm{SL}_{2}(\mathbb{Z})$.

Exercise 3

Show that the series

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

converges absolutely and locally uniformly for $s \in \mathbb{C}$ with $\operatorname{Re}(s)>1$, and thus defines a holomorphic function on $\{s \in \mathbb{C} \mid \operatorname{Re}(s)>1\}$.

Exercise 4

Show that, for $z \in \mathbb{C} \backslash \mathbb{Z}$, the identity

$$
\pi \cot (\pi z)=\frac{1}{z}+\sum_{n=1}^{\infty}\left(\frac{1}{z+n}+\frac{1}{z-n}\right)
$$

holds. Show that the series on the right-hand side converges absolutely and locally uniformly on $\mathbb{C} \backslash \mathbb{Z}$.

