U Tübingen

Exercises for the Course Modular forms Prof. Dr. A. v. Pippich

Exercise class: 26.10.18

Exercise sheet 1

Exercise 1

For $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{R})$ and $\tau \in \mathbb{H} = \{z \in \mathbb{C} \mid \operatorname{Im}(z) > 0\}$, we define

$$\gamma \tau := \frac{a\tau + b}{c\tau + d}.\tag{1}$$

(a) Show that

$$\operatorname{Im}(\gamma\tau) = \frac{\operatorname{Im}(\tau) \det \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right)}{|c\tau + d|^2}.$$

- (b) Show that (1) defines an action of $SL_2(\mathbb{R})$ on \mathbb{H} , and an action of $GL_2^+(\mathbb{R})$ on \mathbb{H} .
- (c) Show that $SL_2(\mathbb{R})$ acts transitively on \mathbb{H} . To do this, determine for every $z \in \mathbb{H}$ an element $\gamma \in SL_2(\mathbb{R})$ with $\gamma i = z$.

Exercise 2

Let $SL_2(\mathbb{Z}) := \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a, b, c, d \in \mathbb{Z}, ad - bc = 1 \}$ be the modular group. Let

$$E := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad S := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad T := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

(a) Show the identities

$$S^{2} = -E;$$

$$T^{n} = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \quad (n \in \mathbb{Z});$$

$$(ST)^{3} = (TS)^{3} = -E.$$

(b) Express the matrix

$$\begin{pmatrix} 4 & 9\\ 11 & 25 \end{pmatrix}$$

as word in S, S^{-1}, T and T^{-1} .

(c) Let Γ be the subgroup of $\operatorname{SL}_2(\mathbb{Z})$ generated by S and T. Let $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be a matrix in $\operatorname{SL}_2(\mathbb{Z})$. Use the identity

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} T^n = \begin{pmatrix} a & b' \\ c & nc+d \end{pmatrix}$$

to show that unless c = 0, some matrix $\alpha \gamma$ with $\gamma \in \Gamma$ has bottom row (c, d') with $|d'| \leq |c|/2$. Use the identity

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} S = \begin{pmatrix} b & -a \\ d & -c \end{pmatrix}$$

to show that this process can be iterated until some matrix $\alpha\gamma$ with $\gamma \in \Gamma$ has bottom row $(0, \star)$. Show that in fact the bottom row is $(0, \pm 1)$, and since $S^2 = -E$ it can be taken to be (0, 1). Show that therefore $\alpha\gamma \in \Gamma$ and so $\alpha \in \Gamma$. Thus Γ is all of $SL_2(\mathbb{Z})$, that is, the matrices S und T generate the group $SL_2(\mathbb{Z})$.

Exercise 3

Show that the series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

converges absolutely and locally uniformly for $s \in \mathbb{C}$ with $\operatorname{Re}(s) > 1$, and thus defines a holomorphic function on $\{s \in \mathbb{C} \mid \operatorname{Re}(s) > 1\}$.

Exercise 4

Show that, for $z \in \mathbb{C} \setminus \mathbb{Z}$, the identity

$$\pi \cot(\pi z) = \frac{1}{z} + \sum_{n=1}^{\infty} \left(\frac{1}{z+n} + \frac{1}{z-n}\right)$$

holds. Show that the series on the right-hand side converges absolutely and locally uniformly on $\mathbb{C} \setminus \mathbb{Z}$.