Exercises for the Course

 Modular forms

 Modular forms}

Prof. Dr. A. v. Pippich
Exercise class: 02.11.18

Exercise sheet 2

Exercise 1

Let $q=q(\tau):=e^{2 \pi i \tau}$ and consider the theta series

$$
\theta(\tau)=\sum_{n=-\infty}^{\infty} q^{n^{2}} .
$$

(a) Let k be a positive integer. Prove the identity

$$
(\theta(\tau))^{k}=\sum_{n=0}^{\infty} A_{k}(n) q^{n}
$$

where $A_{k}(n):=\sharp\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{Z}^{k} \mid x_{1}^{2}+\ldots+x_{k}^{2}=n\right\}$.
(b) Prove the formula

$$
A_{8}(n)=16 \sum_{d \mid n, d \geq 1}(-1)^{n-d} d^{3},
$$

by using similar arguments as in the proof of the formular for $A_{4}(n)$ given in the lecture.

Exercise 2

(a) Let $z, w \in \mathbb{H}$. Show that there exists an element $\gamma \in \mathrm{SL}_{2}(\mathbb{R})$ such that $\gamma z=i r$ and $\gamma w=i t$, where r and t are positive real numbers. (Hint: Observe that $k(2 \theta)=$ $\binom{\cos (\theta) \sin (\theta)}{-\sin (\theta) \cos (\theta)}$ is a hyperbolic rotation at i.)
(b) Let $a, b \in \mathbb{R}$ and $r>0$, and define the subsets $g_{a}, g_{b, r}$ of \mathbb{H} as follows

$$
g_{a}:=\{x+i y \in \mathbb{H} \mid x=a\} \quad \text { and } \quad g_{b, r}:=\left\{x+i y \in \mathbb{H} \mid(x-b)^{2}+y^{2}=r^{2}\right\} .
$$

The collection of hyperbolic lines (geodesics) in the upper-half plane model \mathbb{H} (endowed with the hyperbolic metric) is $\left\{g_{a} \mid a \in \mathbb{R}\right\} \cup\left\{g_{b, r} \mid b \in \mathbb{R}, r>0\right\}$. Prove that, under the action of $\mathrm{SL}_{2}(\mathbb{R})$ on \mathbb{H}, lines are sent to lines.

Exercise 3

Let $\gamma=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{R}), \gamma \neq \pm\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, and let $\operatorname{tr}(\gamma):=a+d$ denote the trace of γ. We say that γ is

- parabolic, if $|\operatorname{tr}(\gamma)|=2$;
- hyperbolic, if $|\operatorname{tr}(\gamma)|>2$;
- elliptic, if $|\operatorname{tr}(\gamma)|<2$.

Prove the following equivalences:
(i) γ is parabolic if and only if γ has exactly one fixed point on $\mathbb{R} \cup\{\infty\}$;
(ii) γ is hyperbolic if and only if γ has exactly two fixed points on $\mathbb{R} \cup\{\infty\}$;
(iii) γ is elliptic if and only if γ has exactly one fixed point on \mathbb{H}.

Exercise 4

Let $z=x+i y \in \mathbb{H}$ with $x, y \in \mathbb{R}, y>0$. Recall that the hyperbolic volume $\operatorname{vol}_{\text {hyp }}(\mathcal{F})$ of a connected subset $\mathcal{F} \subset \mathbb{H}$ is defined by

$$
\operatorname{vol}_{\mathrm{hyp}}(\mathcal{F})=\int_{\mathcal{F}} \frac{d x d y}{y^{2}}
$$

as long as the integral exists. Consider $\mathcal{F}=\left\{z \in \mathbb{H}:|\operatorname{Re}(z)|<\frac{1}{2},|z|>1\right\}$.
(a) Calculate $\operatorname{vol}_{\text {hyp }}(\mathcal{F})$.
(b) Let Δ be a hyperbolic triangle with angles α, β, γ. Gauß-Bonnet's theorem states that $\operatorname{vol}_{\text {hyp }}(\Delta)=\pi-\alpha-\beta-\gamma$. Using this result, determine $\operatorname{vol}_{\text {hyp }}(\mathcal{F})$ again.

