U Tübingen

# Exercises for the Course Modular forms Prof. Dr. A. v. Pippich

Exercise class: 02.11.18

## Exercise sheet 2

## Exercise 1

Let  $q = q(\tau) := e^{2\pi i \tau}$  and consider the theta series

$$\theta(\tau) = \sum_{n = -\infty}^{\infty} q^{n^2}$$

(a) Let k be a positive integer. Prove the identity

$$(\theta(\tau))^k = \sum_{n=0}^{\infty} A_k(n)q^n,$$

where  $A_k(n) := \sharp\{(x_1, \dots, x_k) \in \mathbb{Z}^k \mid x_1^2 + \dots + x_k^2 = n\}.$ 

(b) Prove the formula

$$A_8(n) = 16 \sum_{d|n,d \ge 1} (-1)^{n-d} d^3,$$

by using similar arguments as in the proof of the formular for  $A_4(n)$  given in the lecture.

#### Exercise 2

- (a) Let  $z, w \in \mathbb{H}$ . Show that there exists an element  $\gamma \in \mathrm{SL}_2(\mathbb{R})$  such that  $\gamma z = ir$ and  $\gamma w = it$ , where r and t are positive real numbers. (Hint: Observe that  $k(2\theta) = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}$  is a hyperbolic rotation at i.)
- (b) Let  $a, b \in \mathbb{R}$  and r > 0, and define the subsets  $g_a, g_{b,r}$  of  $\mathbb{H}$  as follows

$$g_a := \{x + iy \in \mathbb{H} \mid x = a\}$$
 and  $g_{b,r} := \{x + iy \in \mathbb{H} \mid (x - b)^2 + y^2 = r^2\}.$ 

The collection of hyperbolic lines (geodesics) in the upper-half plane model  $\mathbb{H}$  (endowed with the hyperbolic metric) is  $\{g_a \mid a \in \mathbb{R}\} \cup \{g_{b,r} \mid b \in \mathbb{R}, r > 0\}$ . Prove that, under the action of  $SL_2(\mathbb{R})$  on  $\mathbb{H}$ , lines are sent to lines.



## Exercise 3

Let  $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R}), \ \gamma \neq \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ , and let  $tr(\gamma) := a + d$  denote the trace of  $\gamma$ . We say that  $\gamma$  is

- parabolic, if  $|tr(\gamma)| = 2$ ;
- hyperbolic, if  $|tr(\gamma)| > 2$ ;
- *elliptic*, if  $|tr(\gamma)| < 2$ .

Prove the following equivalences:

- (i)  $\gamma$  is parabolic if and only if  $\gamma$  has exactly one fixed point on  $\mathbb{R} \cup \{\infty\}$ ;
- (ii)  $\gamma$  is hyperbolic if and only if  $\gamma$  has exactly two fixed points on  $\mathbb{R} \cup \{\infty\}$ ;
- (iii)  $\gamma$  is elliptic if and only if  $\gamma$  has exactly one fixed point on  $\mathbb{H}$ .

#### Exercise 4

Let  $z = x + iy \in \mathbb{H}$  with  $x, y \in \mathbb{R}, y > 0$ . Recall that the hyperbolic volume  $\operatorname{vol}_{\operatorname{hyp}}(\mathcal{F})$  of a connected subset  $\mathcal{F} \subset \mathbb{H}$  is defined by

$$\operatorname{vol}_{\operatorname{hyp}}(\mathcal{F}) = \int_{\mathcal{F}} \frac{dxdy}{y^2}$$

as long as the integral exists. Consider  $\mathcal{F} = \{z \in \mathbb{H} : |\operatorname{Re}(z)| < \frac{1}{2}, |z| > 1\}.$ 

- (a) Calculate  $\operatorname{vol}_{\operatorname{hyp}}(\mathcal{F})$ .
- (b) Let  $\Delta$  be a hyperbolic triangle with angles  $\alpha, \beta, \gamma$ . Gauß-Bonnet's theorem states that  $\operatorname{vol}_{\operatorname{hyp}}(\Delta) = \pi \alpha \beta \gamma$ . Using this result, determine  $\operatorname{vol}_{\operatorname{hyp}}(\mathcal{F})$  again.