U Tübingen

Exercises for the Course Modular forms Prof. Dr. A. v. Pippich

Exercise class: 07.12.18

Exercise sheet 5

Let $\Gamma := \operatorname{SL}_2(\mathbb{Z}), q := e^{2\pi i \tau}$, and $\varrho := e^{2\pi i/3}$.

Exercise 1

(a) Let $f \in \mathcal{M}_k(\Gamma), f \neq 0$. Use formula

$$\nu_{\infty}(f) + \frac{\nu_i(f)}{2} + \frac{\nu_{\varrho}(f)}{3} + \sum_{\substack{\Gamma \tau \in \Gamma \setminus \mathbb{H} \\ \tau \notin \Gamma i, \Gamma \rho}} \nu_{\tau}(f) = \frac{k}{12}$$

to prove that there is exactly one possibility for the rows in the following table and complete the table.

k	$\frac{k}{12}$	$\nu_{\infty}(f)$	$\nu_i(f)$	$\nu_{\varrho}(f)$	$\nu_{\tau}(f) \ (\Gamma \tau \in \Gamma \backslash \mathbb{H}; \tau \notin \Gamma i, \Gamma \varrho)$
4	$\frac{1}{3}$				
6	$\frac{1}{2}$				
8	$\frac{2}{3}$				
10	$\frac{5}{6}$				
14	$\frac{7}{6}$				

- (b) Prove that $\mathcal{M}_k(\Gamma) = \mathbb{C} \cdot E_k$ for k = 4, 6, 8, 10, 14.
- (c) Prove that $S_k(\Gamma) = \{0\}$ for k = 4, 6, 8, 10, 14.
- (d) Compute $E_4(\varrho)$ and $E_6(i)$.

Exercise 2

(a) Consider the Delta function $\Delta(\tau) := (E_4(\tau)^3 - E_6(\tau)^2)/1728$. Prove that $\Delta(\tau)$ has a Fourier expansion of the form

$$\Delta(\tau) = q - 24q^2 + 252q^3 + O(q^4) \in \mathbb{Z}[[q]].$$

(b) Prove that $\Delta(\tau) \in \mathcal{S}_{12}(\Gamma)$. Prove that $\nu_{\infty}(\Delta) = 1$ and conclude that $\Delta(\tau)$ is non-vanishing on \mathbb{H} .

Exercise 3

(a) Consider the *j*-function $j(\tau) := E_4(\tau)^3 / \Delta(\tau)$. Prove that $j(\tau)$ has a Fourier expansion of the form

$$j(\tau) = \frac{1}{q} + 744 + 196884q + O(q^2) \in \mathbb{Z}[[q]].$$

Prove that $\nu_{\infty}(j) = -1$, and that $j(\tau)$ is holomorphic on \mathbb{H} . Prove that $j(\tau)$ is a modular function of weight 0 for Γ .

- (b) For $c \in \mathbb{C}$, consider the function $f_c(\tau) := E_4(\tau)^3 c\Delta(\tau)$. Prove that $f_c(\tau) \in \mathcal{M}_{12}(\Gamma)$, and that $f_c(\tau) = 0$ if and only if $j(\tau) = c$. Prove that $\nu_{\infty}(f_c) = 0$.
- (c) Use (b) to prove that the *j*-function induces a bijection

$$j: \Gamma \setminus \mathbb{H} \to \mathbb{C}.$$

(d) Compute j(i) and $j(\varrho)$.

Exercise 4

- (a) Visit the website http://www.sagemath.org. Use the link to CoCalc (SageMath-Cloud) and create an account or sign in with your account.
- (b) Use Sage to compute the first ten coefficients in the q-series of the functions E_4 , E_6 , Δ , and j.