Exercises for the Course
\section*{Modular forms}
Prof. Dr. A. v. Pippich
Exercise class: 14.12.18

Exercise sheet 6

Exercise 1

(a) Prove a relation between $E_{4}(\tau)^{2}$ and $E_{8}(\tau)$.
(b) Use (a) to prove the far from obvious identity

$$
\sigma_{7}(n)=\sigma_{3}(n)+120 \sum_{m=1}^{n-1} \sigma_{3}(m) \sigma_{3}(n-m)
$$

Exercise 2

(a) Let $N \in \mathbb{N}_{\geq 1}$. Prove that all the cusps of $\Gamma_{0}(N)$ are regular.
(b) Let $N \in \mathbb{N}_{\geq 5}$. Prove that all the cusps of $\Gamma_{1}(N)$ are regular.
(c) Prove that the cusp $[1: 2]$ is an irregular cusp of $\Gamma_{1}(4)$.

Exercise 3

Let $k \in \mathbb{Z}$ and $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}^{+}(\mathbb{R})$. We let

$$
j(\gamma, \tau):=c \tau+d
$$

and we define the weight- k operator $\left.\right|_{k}$ on functions $f: \mathbb{H} \rightarrow \mathbb{C}$ by

$$
\left(\left.f\right|_{k} \gamma\right)(\tau)=\operatorname{det}(\gamma)^{k / 2} j(\gamma, \tau)^{-k} f(\gamma \tau) \quad(\tau \in \mathbb{H})
$$

For $\gamma, \gamma^{\prime} \in \mathrm{GL}_{2}^{+}(\mathbb{R})$ and $\tau \in \mathbb{H}$, prove the following identities
(i) $j\left(\gamma \gamma^{\prime}, \tau\right)=j\left(\gamma, \gamma^{\prime} \tau\right) j\left(\gamma^{\prime}, \tau\right)$.
(ii) $j\left(\gamma^{-1}, \tau\right)=j\left(\gamma, \gamma^{-1} \tau\right)^{-1}$.
(iii) $\frac{d(\gamma \tau)}{d \tau}=\operatorname{det}(\gamma) j(\gamma, \tau)^{-2}$.
(iv) $\left.f\right|_{k}\left(\gamma \gamma^{\prime}\right)=\left.\left(\left.f\right|_{k} \gamma\right)\right|_{k} \gamma^{\prime}$.

Exercise 4

(a) Prove that the group $\Gamma(2)$ is generated by the following matrices

$$
T^{2}=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right), \quad-E=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), \quad R:=\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right),
$$

and verify this result with SAGE. For the proof, proceed as follows:
(1) Prove that $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma(2)$ if and only if a, d are odd, b, c are even, and $a d-b c=1$. In particular, $(a, b)=1$ and $(a, c)=1$.
(2) Prove that every $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma(2)$ can be transformed to

$$
\left(\begin{array}{cc}
\star & 0 \\
\star & \star
\end{array}\right),
$$

after a suitable multiplication from the right by T^{2} and R.
(3) Prove that every matrix of the form $\left(\begin{array}{ll}a & 0 \\ c & d\end{array}\right) \in \Gamma(2)$ is a word in R and $-E$.
(b) Consider the group Γ_{θ}, which is defined to be the subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$ generated by T^{2} and S, with S as in Sheet 1. Prove that Γ_{θ} is a congruence group by showing that $\Gamma(2) \subseteq \Gamma_{\theta}$.

