Exercises for the Course

 Modular forms

 Modular forms}

Prof. Dr. A. v. Pippich

Exercise class: 21.12.18

Exercise sheet 7

Exercise 1

Recall that, for $\tau \in \mathbb{H}$, we have

$$
P(\tau):=2 \zeta(2)+\sum_{c \in \mathbb{Z} \backslash\{0\}} \sum_{d \in \mathbb{Z}} \frac{1}{(c \tau+d)^{2}}=2 \zeta(2)-8 \pi^{2} \sum_{n=1}^{\infty} \sigma_{1}(n) q^{n} .
$$

Also, recall that

$$
\begin{equation*}
\frac{1}{\tau}+\sum_{d=1}^{\infty}\left(\frac{1}{\tau-d}+\frac{1}{\tau+d}\right)=\pi \cot (\pi \tau)=\pi i-2 \pi i \sum_{m=0}^{\infty} q^{m} . \tag{1}
\end{equation*}
$$

The aim of this exercise is to show that

$$
\begin{equation*}
\left(\left.P\right|_{2} \gamma\right)(\tau)=P(\tau)-\frac{2 \pi i c}{(c \tau+d)} \tag{2}
\end{equation*}
$$

for any $\tau \in \mathbb{H}$ and any $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$.
(a) Suppose that $P(\tau)$ satisfies the identity in (2) for two particular matrices $\gamma_{1}, \gamma_{2} \in$ $\mathrm{SL}_{2}(\mathbb{Z})$. Show that $P(\tau)$ then satisfies the identity for the product $\gamma_{1} \gamma_{2}$ and the inverse γ_{1}^{-1} as well. Thus to establish (2) it suffices to prove the identity for a set of generators for $\mathrm{SL}_{2}(\mathbb{Z})$.
(b) Use the Fourier expansion for $P(\tau)$ to show that it satisfies (2) for $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$.
(c) Consider $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$. Show that

$$
\left(\left.P\right|_{2}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right)(\tau)=2 \zeta(2)+\sum_{d \in \mathbb{Z}} \sum_{c \in \mathbb{Z} \backslash\{0\}} \frac{1}{(c \tau+d)^{2}},
$$

which differs from the definition of $P(\tau)$ in the reversed order of summation.
(d) Use partial fractions to show that

$$
\sum_{c \in \mathbb{Z} \backslash\{0\}} \sum_{d \in \mathbb{Z}} \frac{1}{(c \tau+d)(c \tau+d+1)}=0 .
$$

Subtract this from $P(\tau)$ to show that

$$
P(\tau)=2 \zeta(2)+\sum_{c \in \mathbb{Z} \backslash\{0\}} \sum_{d \in \mathbb{Z}} \frac{1}{(c \tau+d)^{2}(c \tau+d+1)},
$$

where now the sum is absolutely convergent.
(e) Reverse the order of summation in (d) and show that

$$
P(\tau)=\tau^{-2} P(-1 / \tau)-\sum_{d \in \mathbb{Z}} \sum_{c \in \mathbb{Z} \backslash\{0\}} \frac{1}{(c \tau+d)(c \tau+d+1)} .
$$

The error term is

$$
-\lim _{N \rightarrow \infty} \sum_{d=-N}^{N-1} \sum_{c \in \mathbb{Z} \backslash\{0\}}\left(\frac{1}{c \tau+d}-\frac{1}{c \tau+d+1}\right) .
$$

Reverse the order and the inner sum telescopes. Manipulate the result into an expression including a sum for $\pi \cot (\pi N / \tau)$ per the first equality of (1). Then, use the other side of (1) to take the limit. Conclude that $P(\tau)$ satisfies (2) for $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$.
(f) Show that

$$
\frac{1}{j(\gamma, \tau)^{2} \operatorname{Im}(\gamma \tau)}=\frac{1}{\operatorname{Im}(\tau)}-\frac{2 i c}{c \tau+d}
$$

for any $\tau \in \mathbb{H}$ and any $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$. Conclude that the function $P(\tau)-$ $\pi / \operatorname{Im}(\tau)$ has weight 2 w.r.t. $\mathrm{SL}_{2}(\mathbb{Z})$, but that it is not holomorphic on \mathbb{H}.

Exercise 2

Recall that the Dedekind eta function is given, for $\tau \in \mathbb{H}$, by the infinite product

$$
\eta(\tau)=e^{2 \pi i \tau / 24} \prod_{n=1}^{\infty}\left(1-e^{2 \pi i \tau n}\right)
$$

Prove that η is holomorphic on \mathbb{H}.
Hint: Take the logarithm of the product and show that the resulting series converges absolutely and locally uniformly on \mathbb{H}.

