Exercises for the Course

 Modular forms

 Modular forms}

Prof. Dr. A. v. Pippich
Exercise class: 18.01.19

Exercise sheet 8

Let X be a compact Riemann surface and let $\mathcal{M}(X)$ be the field of meromorphic functions on X. Recall that $\operatorname{Div}(X)=\operatorname{Div}_{\mathbb{Z}}(X)$ denotes the group of divisors of X. Further, for a non-zero meromorphic function $f \in \mathcal{M}(X)$, the principal divisor associated to f is the divisor $(f):=\sum_{P \in X} \operatorname{ord}_{P}(f) \cdot P \in \operatorname{Div}(X)$, where $\operatorname{ord}_{P}(f)$ denotes the order of zero (or negative the order of pole) of f at P. For a divisor $D \in \operatorname{Div}(X)$, by $\mathcal{L}(D)$ we denote the set of $f \in \mathcal{M}(X)$ such that $(f)+D \geq 0$, including, by convention, the zero function 0 .

Exercise 1

Prove the following assertions:
(a) For non-zero $f, g \in \mathcal{M}(X)$, we have $(f g)=(f)+(g)$ and $(f / g)=(f)-(g)$. Furthermore, the set $\operatorname{PDiv}(X)$ of principal divisors of X is a subgroup of $\operatorname{Div}(X)$.
(b) If $D=\sum_{P} n_{P} \cdot P \in \operatorname{Div}(X)$, then $\mathcal{L}(D)$ consists of all meromorphic functions that have at worst a pole of order n_{P} at P (or a zero of order $-n_{P}$ or greater, if n_{p} is negative). The set $\mathcal{L}(D)$ is a \mathbb{C}-vector space; by $\ell(D)$ we denote its dimension.
(c) Let $D_{1}, D_{2} \in \operatorname{Div}(X)$. If $D_{1} \leq D_{2}$, then $\mathcal{L}\left(D_{1}\right) \subseteq \mathcal{L}\left(D_{2}\right)$. If $f \in \mathcal{L}\left(D_{1}\right)$ and $g \in$ $\mathcal{L}\left(D_{2}\right)$, then $f g \in \mathcal{L}\left(D_{1}+D_{2}\right)$.
(d) The space $\mathcal{L}(0)$ consists only of the constant functions, and $\mathcal{L}(D)$ consists only of 0 if $D<0$. In particular, $\ell(0)=1$, and $\ell(D)=0$ when $D<0$.
(e) Let $D \in \operatorname{Div}(X)$ and let $P \in X$. Then, $\mathcal{L}(D)$ has codimension at most 1 in $\mathcal{L}(D+P)$.
(f) By (d) and (e), the spaces $\mathcal{L}(D)$ are all finite dimensional, with the dimension $\ell(D)$ increasing by zero or one each time one adds an additional pole to D.
(g) Let $D, D^{\prime} \in \operatorname{Div}(X)$ be divisors with $D=D^{\prime}+(g)$ for some $g \in \mathcal{M}(X)$. Then, there is an isomorphism $\mathcal{L}(D) \cong \mathcal{L}\left(D^{\prime}\right)$.

Exercise 2

(a) Prove that for any meromorphic 1 -form ω on X, the sum of all residues of ω vanishes.
(b) Prove that very principal divisor $(f) \in \operatorname{PDiv}(X)$ has degree zero.

Exercise 3

(a) If $\operatorname{deg}(D)<0$, show that $\ell(D)=0$.
(b) If $\operatorname{deg}(D)=0$, show that $\ell(D)=0$ is equal to 0 or 1 , with the latter occuring if and only if D is principal. Furthermore, any non-zero element of $\mathcal{L}(D)$ has divisor $-D$.
(c) If $\operatorname{deg}(D) \geq 0$, establish the bound $\ell(D) \leq \operatorname{deg}(D)+1$.

Exercise 4

Compute the following dimensions and verify your results SAGE:
(a) $\operatorname{dim} M_{2}\left(\Gamma_{0}(2)\right), \operatorname{dim} S_{10}\left(\Gamma_{0}(2)\right)$.
(b) $\operatorname{dim} M_{2}\left(\Gamma_{0}(4)\right), \operatorname{dim} M_{4}\left(\Gamma_{0}(4)\right)$.
(c) $\operatorname{dim} S_{2}\left(\Gamma_{0}(11)\right), \operatorname{dim} S_{4}\left(\Gamma_{0}(11)\right)$.
(d) $\operatorname{dim} S_{2}\left(\Gamma_{0}(13)\right), \operatorname{dim} S_{4}\left(\Gamma_{0}(13)\right)$.
(e) $\operatorname{dim} S_{2}\left(\Gamma_{0}(35)\right), \operatorname{dim} S_{12}\left(\Gamma_{0}(35)\right)$.

