U Tübingen

Exercises for the Course Modular forms

Prof. Dr. A. v. Pippich

Exercise class: 25.01.19

Exercise sheet 9

Let $\Gamma := \operatorname{SL}_2(\mathbb{Z})$ and let $k \in \mathbb{N}_{>0}$ be even. For $n \in \mathbb{N}_{>0}$, let T(n) denote the *n*-th Hecke operator acting on $\mathcal{M}_k(\Gamma)$.

Exercise 1

Deduce the following assertions from the proof of Proposition 4 given in class:

- (a) If $f \in S_k(\Gamma)$, then $f \mid T(n) \in S_k(\Gamma)$.
- (b) Let $f \in M_k(\Gamma)$ and let a(m) denote the *m*-th Fourier coefficient of $f \ (m \in \mathbb{N})$. Let p be a prime number. Then, the *m*-th Fourier coefficient a'(m) of $f \mid T(p) \ (m \in \mathbb{N})$ satisfies

$$a'(m) = a(mp) + p^{k-1} a\left(\frac{m}{p}\right);$$

here, a(m/p) = 0, if $m/p \notin \mathbb{Z}$.

Exercise 2

(a) Let p be a prime number and let $r, s \in \mathbb{N}$ with $s \geq r$. Prove that

$$T(p^r) \cdot T(p^s) = \sum_{t=0}^r p^{t(k-1)} T(p^{r+s-2t}).$$

(b) Let $m, n \in \mathbb{N}_{>0}$. Prove that

$$T(m) \cdot T(n) = \sum_{d \mid (m,n)} d^{k-1} T\left(\frac{mn}{d^2}\right).$$

(c) Using (b), prove that

$$\mathcal{H} := \left\{ \sum_{n \in \mathbb{N}_{>0}} c_n T(n) \, \Big| \, c_n \in \mathbb{C}, c_n = 0 \text{ for almost all } n \right\}$$

has the structure of a commutative algebra over \mathbb{C} . This algebra is called *Hecke* algebra.

Exercise 3

Let $f \in \mathcal{S}_k(\Gamma), f \neq 0$, with Fourier expansion

$$f(\tau) = \sum_{n=1}^{\infty} a(n) \cdot q^n,$$

be a normalized Hecke eigenform. Then, for $s \in \mathbb{C}$ with $\operatorname{Re}(s) \gg 0$, the associated Dirichlet L-series

$$L(f,s) := \sum_{n=1}^{\infty} \frac{a(n)}{n^s}$$

converges absolutely. Prove that, for $\operatorname{Re}(s) \gg 0$, we have

$$L(f,s) = \prod_{p \text{ prime}} \left(1 - a(p)p^{-s} + p^{k-1-2s} \right)^{-1}.$$

Exercise 4

Consider the Delta function $\Delta(\tau) := (E_4(\tau)^3 - E_6(\tau)^2)/1728$ with Fourier expansion

$$\Delta(\tau) = \sum_{n=1}^{\infty} \tau(n) \cdot q^n.$$

Prove the following assertions:

- (a) $\Delta(\tau)$ is a Hecke eigenform. Is $\Delta(\tau)$ a normalized Hecke eigenform?
- (b) For coprime $m, n \in \mathbb{N}_{>0}$, we have

$$\tau(m \cdot n) = \tau(m) \cdot \tau(n).$$

For $r \in \mathbb{N}_{>0}$ and p a prime number, we have

$$\tau(p^r) \cdot \tau(p) = \tau(p^{r+1}) + p^{11}\tau(p^{r-1}).$$

(c) For $\operatorname{Re}(s) \gg 0$, we have

$$L(\Delta, s) = \prod_{p \text{ prime}} \left(1 - \tau(p) p^{-s} + p^{11-2s} \right)^{-1}.$$

Exercise 5

Consider the Eisenstein series $E_k(\tau) \in \mathcal{M}_k(\Gamma)$ for k > 2. Prove the following assertions:

- (a) $E_k(\tau)$ is a Hecke eigenform. Is $E_k(\tau)$ a normalized Hecke eigenform?
- (b) For coprime $m, n \in \mathbb{N}_{>0}$, we have

$$\sigma_{k-1}(m \cdot n) = \sigma_{k-1}(m) \cdot \sigma_{k-1}(n)$$

For $r \in \mathbb{N}_{>0}$ and p a prime number, we have

$$\sigma_{k-1}(p^r) \cdot \sigma_{k-1}(p) = \sigma_{k-1}(p^{r+1}) + p^{k-1}\sigma_{k-1}(p^{r-1}).$$

(c) The associated Dirichlet L-series of the corresponding normalized Hecke eigenform equals $\zeta(s-k+1)\zeta(s)$.