3 Cannings models

3.1 Definition of the model

3.1.1 Def. (Exchangeability)

Finitely many r.v. X_1, \ldots, X_N are called <u>exchangeable</u>, if $(X_{\pi 1}, \ldots, X_{\pi N}) \stackrel{d}{=} (X_1, \ldots, X_N)$ for all permutations π of $[N] := \{1, \ldots, N\}$.

Rem.

 $X_n, n \in [N], \text{ iid.} \Rightarrow X_n, n \in [N], \text{ exchangeable.} \Rightarrow X_n \stackrel{d}{=} X_m \ \forall \ n, m \in [N].$

The following model was introduced by Cannings (1974, 1975).

3.1.2 Def. (Cannings Model)

A population model with non-overlapping generations $r \in \mathbb{N}_0$ and fixed population size $N \in \mathbb{N}$ in each generation is called a <u>Cannings model</u>, if the numbers $\nu_i^{(r)}$ of offspring of individual $i \in [N]$ alive in generation $r \in \mathbb{N}_0$ have the following properties.

- (i) For each generation $r \in \mathbb{N}_0$ the r.v. $\nu_i^{(r)}, i \in [N]$, are exchangeable with $\nu_1^{(r)} + \cdots + \nu_N^{(r)} = N$.
- (ii) The offspring vectors $\nu^{(r)} := (\nu_1^{(r)}, \dots, \nu_N^{(r)}), r \in \mathbb{N}_0$, are iid.

Representation of a Cannings model with population size N = 7

3.1.3 Examples

- 1. <u>Moran model</u> (MM): $\nu^{(r)}$ is a random permutation of $(2, 1, \dots, 1, 0)$.
- 2. <u>Wright–Fisher model</u> (WFM): $\nu^{(r)}$ has a symmetric multinomial distribution, i.e., for all $n_1, \ldots, n_N \in \mathbb{N}_0$ with $n_1 + \cdots + n_N = N$,

$$P(\nu_1^{(r)} = n_1, \dots, \nu_N^{(r)} = n_N) = \frac{N! N^{-N}}{n_1! \cdots n_N!}$$

3.2 Descendants and extinction probability

3.2.1 Def. (Descendants)

For $i \in \{0, \ldots, N\}$ let $X_r^{(i)}$ denote the number of <u>descendants</u> of the individuals 1 to *i* of generation 0 in generation $r \in \mathbb{N}_0$. The process $X := (X_r^{(i)})_{r \in \mathbb{N}_0}$ is called <u>descendant process</u> or <u>forward process</u>.

Rem.

It is easily seen that X is a HMC with state space $\{0, \ldots, N\}$, initial state $X_0^{(i)} = i$ and transition probabilities $\pi_{jk} := P(X_{r+1}^{(i)} = k | X_r^{(i)} = j)$ given by

$$\pi_{jk} = P(X_1^{(j)} = k) = P(\nu_1 + \dots + \nu_j = k), \qquad j, k \in \{0, \dots, N\},$$

where $\nu_i := \nu_i^{(0)}, \, i \in [N].$

3.2.2 Example

For the WFM, $\nu_1 + \cdots + \nu_j$ has a binomial distribution with parameters N and $p_j := j/N$, i.e.

$$\pi_{jk} = B(N, p_j, k) := \binom{N}{k} \left(\frac{j}{N}\right)^k \left(1 - \frac{j}{N}\right)^{N-k}$$

3.2.3 Def. (Extinction Probability)

Let $N \in \mathbb{N}$. For $i \in \{0, \ldots, N\}$ let

$$q_i := P(X_r^{(i)} = 0 \text{ eventually}) = P\left(\bigcup_{r \in \mathbb{N}_0} \{X_r^{(i)} = 0\}\right) = \lim_{r \to \infty} P(X_r^{(i)} = 0)$$

denote the <u>extinction probability</u> of the descendants of *i* individuals.

3.2.4 Theorem

The process $X := (X_r^{(i)})_{r \in \mathbb{N}_0}$ is a nonnegative bounded martingale, which converges a.s. and in L^p (p > 0) as $r \to \infty$ to a r.v. $X_{\infty}^{(i)}$ and $(X_r^{(i)})_{r \in \mathbb{N}_0 \cup \{\infty\}}$ is a martingale. If $P(\nu_1 = 1) < 1$, then the states $1, \ldots, N-1$ are transient and $X_{\infty}^{(i)}$ takes a.s. the values 0 and N with probability q_i and $1 - q_i$ respectively.

Proof.

For all $j \in \{0, ..., N\}$ with $P(X_r^{(i)} = j) > 0$,

$$E(X_{r+1}^{(i)} | X_r^{(i)} = j) = \sum_{k=0}^N k P(X_{r+1}^{(i)} = k | X_r^{(i)} = j) = \sum_{k=0}^N k \pi_{jk}$$
$$= \sum_{k=0}^N k P(\nu_1 + \dots + \nu_j = k) = E(\nu_1 + \dots + \nu_j) = j$$

 $\Rightarrow X$ is a nonnegative martingale (Exercise 1.3.2).

Let p > 0. $\sup_{r \in \mathbb{N}_0} |X_r^{(i)}|^p \leq N^p$. $\Rightarrow X$ is *p*-times uniformly integrable, and hence converges a.s. and in L^p (see Bauer, 'Probability Theory', Corollary 19.4) to a r.v. $X_{\infty}^{(i)}$ such that $(X_r^{(i)})_{r \in \mathbb{N}_0 \cup \{\infty\}}$ is still a martingale. Assume now that $P(\nu_1 = 1) < 1$. Then² for $i \in \{1, \ldots, N-1\}$

$$\sum_{j=i+1}^{N} \pi_{ij} = P(\nu_1 + \dots + \nu_i > i) > 0.$$

From a state $i \in \{1, \ldots, N-1\}$ one reaches in one step a state j > iwith positive probability. State space is finite. \Rightarrow One reaches (iteratively) from a state i after a finite number $n_i \in \mathbb{N}$ of steps the absorbing state N with positive probability, i.e. $\pi_{iN}^{(n_i)} > 0$. Define $n := \max(n_1, \ldots, n_{N-1})$. $\Rightarrow \pi_{iN}^{(n)} \ge \pi_{iN}^{(n_i)} \pi_{NN}^{(n-n_i)} = \pi_{iN}^{(n_i)} > 0$. From $\pi_{00}^{(n)} = \pi_{NN}^{(n)} = 1$ it follows that $\inf_{0 \le i \le N}(\pi_{i0}^{(n)} + \pi_{iN}^{(n)}) > 0$. Thus, for $m \in \mathbb{N}$

$$\begin{split} P(0 < X_{nm}^{(i)} < N) \\ &= \sum_{j=1}^{N-1} P(0 < X_{nm}^{(i)} < N \,|\, X_{n(m-1)}^{(i)} = j) \,P(X_{n(m-1)}^{(i)} = j) \\ &= \sum_{j=1}^{N-1} P(0 < X_n^{(j)} < N) \,P(X_{n(m-1)}^{(i)} = j) \\ &= \sum_{j=1}^{N-1} (1 - \pi_{j0}^{(n)} - \pi_{jN}^{(n)}) \,P(X_{n(m-1)}^{(i)} = j) \\ &\leq \alpha \,P(0 < X_{n(m-1)}^{(i)} < N) \quad \text{with } \alpha := 1 - \inf_{0 \leq i \leq N} (\pi_{i0}^{(n)} + \pi_{iN}^{(n)}) < 1. \end{split}$$

 $\begin{aligned} &\text{Induction on } m. \Rightarrow P(0 < X_{nm}^{(i)} < N) \leq \alpha^m \; \forall \; m \in \mathbb{N}. \\ &X_{nm}^{(i)} \xrightarrow{d} X_{\infty}^{(i)}. \Rightarrow P(0 < X_{\infty}^{(i)} < N) \leq \lim_{m \to \infty} \alpha^m = 0. \\ &\Rightarrow \; P(X_{\infty}^{(i)} \in \{0, N\}) = 1. \; \text{From } X_r^{(i)} \xrightarrow{d} X_{\infty}^{(i)} \; \text{it follows that} \\ &P(X_{\infty}^{(i)} = 0) \; = \; \lim_{r \to \infty} P(X_r^{(i)} = 0) \; = \; P(X_r^{(i)} = 0 \; \text{eventually}) \; = \; q_i \end{aligned}$

²The assumption $\nu_1 + \cdots + \nu_i \leq i$ together with $\mathbf{E}(\nu_1 + \cdots + \nu_i) = i$ yields $\nu_1 + \cdots + \nu_i \equiv i$ and from the exchangeability it follows that $\nu_{k_1} + \cdots + \nu_{k_i} \equiv i$ for arbitrary distinct k_1, \ldots, k_i . Substraction of two of such equations with $k_1 := k$, $l_1 := l$ and $l_j = k_j$ for $j \in \{2, \ldots, i\}$ shows that $\nu_k \equiv \nu_l$ for all $k, l \in \{1, \ldots, N\}$. Since $\sum_{k=1}^N \nu_k = N$ it follows that $P(\nu_1 = 1) = 1$.

and hence $P(X_{\infty}^{(i)} = N) = 1 - q_i$. Moreover,

$$P(X_r^{(i)} \in \{0, N\} \text{ eventually}) = P\left(\bigcup_{r \in \mathbb{N}_0} \{X_r^{(i)} \in \{0, N\}\}\right)$$
$$= \lim_{r \to \infty} P(X_r^{(i)} \in \{0, N\}) = P(X_\infty^{(i)} \in \{0, N\}) = 1.$$

Thus, $P(0 < X_r^{(i)} < N \text{ ∞-often$}) = 0.$

 \Rightarrow The states $1, \ldots, N-1$ are transient.

3.2.5 Lemma

Let $N \in \mathbb{N}$. $q = (q_0, \ldots, q_N)^{\top}$ is an eigenvector of the transition matrix Π to the eigenvalue 1, i.e. $\Pi q = q$. Moreover, q is uniquely determined by this fixed point equation and the boundary conditions $q_0 = 1$ and $q_N = 0$.

Proof.

Obviously, $q_0 = 1$, $q_N = 0$. By the MP and the time homogeneity, for $i \in \{0, \ldots, N\}$ and $r \in \mathbb{N}_0$

$$P(X_{r+1}^{(i)} = 0) = \sum_{j=0}^{N} P(X_{r+1}^{(i)} = 0 | X_1^{(i)} = j) \pi_{ij} = \sum_{j=0}^{N} P(X_r^{(j)} = 0) \pi_{ij}.$$

Letting $r \to \infty$ yields $q_i = \sum_{j=0}^{N} q_j \pi_{ij}$. Thus, $\Pi q = q$.

Uniqueness: Let $x = (x_0, \ldots, x_N)^{\top}$, $\Pi x = x$, $x_0 = 1$ and $x_N = 0$. $\Rightarrow \Pi^r x = x \forall r \in \mathbb{N}$.

$$x_i = \sum_{j=0}^N \pi_{ij}^{(r)} x_j = \sum_{j=0}^N P(X_r^{(i)} = j) x_j \quad \forall \ i \in \{0, \dots, N\}.$$

$$X_r^{(i)} \xrightarrow[r \to \infty]{d} X_{\infty}^{(i)}, P(X_{\infty}^{(i)} = 0) = q_i = 1 - P(X_{\infty}^{(i)} = N)$$

Letting $r \to \infty$ yields

$$x_i = \sum_{j=0}^{N} P(X_{\infty}^{(i)} = j) x_j = q_i x_0 + (1 - q_i) x_N = q_i.$$

Rem.

The map $\varphi : [0,1]^{N+1} \to [0,1]^{N+1}$, defined via $\varphi(x) := \Pi x$ for all $x \in [0,1]^{N+1}$, is not contractive, since $\|\Pi\| := \sup_i \sum_j \pi_{ij} = 1$. The Banach fixed point theorem is hence not applicable to φ .

3 CANNINGS MODELS

3.2.6 Corollary (Extinction probability)

For all Cannings models, $q_i = 1 - i/N$, $i \in \{0, \dots, N\}$.

Proof.

<u>First proof.</u> By Lemma 3.2.5 it suffices to verify that $q = (q_0, \ldots, q_N)^{\top}$ with $q_i := 1 - i/N$ is a solution to the equation $\Pi q = q$. This is obvious, since for $i \in \{0, \ldots, N\}$,

$$(\Pi q)_i = \sum_{j=0}^N \pi_{ij} q_j = \sum_{j=0}^N \pi_{ij} \left(1 - \frac{j}{N} \right) = 1 - \frac{\mathrm{E}(X_1^{(i)})}{N} = 1 - \frac{i}{N} = q_i. \quad \Box$$

<u>Second proof.</u> $(X_r)_{r \in \mathbb{N}_0 \cup \{\infty\}}$ is a martingale. $\Rightarrow N(1 - q_i) = \mathbb{E}(X_{\infty}^{(i)}) = \mathbb{E}(X_{\infty}^{(i)}) = i. \Rightarrow q_i = 1 - i/N.$

3.3 Ancestors

3.3.1 Def. (Ancestors)

Let $N \in \mathbb{N}$. For $n, r \in \mathbb{N}_0$ with $n \leq r$ let $R_n^{(r)}$ denote the number of <u>ancestors</u> of all the N individuals of generation r in generation r - n.

Rem.

It is readily seen that $(R_n^{(r)})_{n \in \{0,...,r\}}$ is a HMC, called the <u>ancestral process</u> or <u>backward process</u>. The following lemma shows in particular that the transition probabilities

$$p_{ij} := P(R_{n+1}^{(r)} = j | R_n^{(r)} = i)$$

neither depend on n nor on r.

3.3.2 Lemma (Transition Probabilities) Let $n, r \in \mathbb{N}_0$ with n < r. Then, for all $i, j \in \{0, ..., N\}$,

$$p_{ij} = \frac{\binom{N}{j}}{\binom{N}{i}} \sum_{\substack{m_1, \dots, m_j \in \mathbb{N} \\ m_1 + \dots + m_j = i}} \operatorname{E}\left(\binom{\nu_1}{m_1} \cdots \binom{\nu_j}{m_j}\right).$$

In particular, $p_{ii} = E(\nu_1 \cdots \nu_i)$.

Proof.

We have

$$p_{ij} = \sum_{k} \underbrace{P(R_{n+1}^{(r)} = j \mid \nu^{(r-n-1)} = k, R_n^{(r)} = i)}_{=:A} \underbrace{P(\nu^{(r-n-1)} = k \mid R_n^{(r)} = i)}_{=:B},$$

3 CANNINGS MODELS

where the sum extends over all $k = (k_1, \ldots, k_N)$ with $P(\nu^{(r-n-1)} = k, R_n^{(r)} = i) > 0$.

 $R_n^{(r)}$ is independent of $\nu^{(r-n-1)} \stackrel{d}{=} \nu$. $\Rightarrow B = P(\nu = k)$.

In order to compute A consider the following equivalent problem.

Given: N colors and one box. The box contains N balls (children), more precisely, k_s balls of color s $(1 \le s \le N)$.

Now sample *i* balls (without replacement) from the box. Question: What is the probability, that among the *i* drawn balls one sees exactly *j* colors? Multivariate hypergeometric distribution. \Rightarrow

$$A = \sum_{m} \frac{\binom{k_1}{m_1} \cdots \binom{k_N}{m_N}}{\binom{N}{i}},$$

where the sum extends over all $m = (m_1, \ldots, m_N) \in \mathbb{N}_0^N$ with $m_1 + \cdots + m_N = i$ and $|\{s \mid 1 \leq s \leq N, m_s > 0\}| = j$. Plugging in A and B and interchanging the two occurring sums yields

$$p_{ij} = \sum_{m} \frac{1}{\binom{N}{i}} \mathbf{E} \left(\binom{\nu_1}{m_1} \cdots \binom{\nu_N}{m_N} \right).$$

The result follows from the exchangeability and since $m_s > 0$ for exactly j indices.

3.3.3 Example

For the WFM,

$$p_{ij} = \frac{(N)_j}{N^i} S(i,j),$$

where the numbers S(i, j) are the <u>Stirling numbers of the second kind</u> and $(N)_j := N(N-1)\cdots(N-j+1).$

Proof. This follows from Lemma 3.3.2, but the calculations are somewhat tedious. We provide a different proof. In the WFM each child chooses at random and independently of all other individuals its parent. Thus, p_{ij} is the probability to obtain exactly j nonempty boxes, when i balls (the children) are allocated at random and independently to N boxes (the parents). Altogether there are N^i such allocations. For the j boxes which should be nonempty, one has $N(N-1)\cdots(N-j+1) = (N)_j$ choices, and S(i,j) is (by def.) the number of ways to partition the i balls into j groups, where then the balls of the k-th group, $k \in \{1, \ldots, j\}$, are allocated in box k.