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3 Cannings models

3.1 Definition of the model

3.1.1 Def. (Exchangeability)
Finitely many r.v. Xi,..., Xy are called exchangeable, if (X1,...,Xzn)

(Xi,...,Xy) for all permutations m of [N] :={1,...,N}.

4

Rem.
X, n € [N], iid. = X,,, n € [N], exchangeable. = X, L X,V nme [N].

The following model was introduced by Cannings (1974, 1975).

3.1.2 Def. (Cannings Model)
A population model with non-overlapping generations r € Ny and fixed pop-
ulation size N € N in each generation is called a Cannings model, if the

numbers VZ-(T) of offspring of individual i € [N] alive in generation r € Ny
have the following properties.

(i) For each generation r € Ny the r.v. VZ-(T), i € [N], are exchangeable with
W) = N

ii) The offspring vectors v(") := I/(T), e ,y(r) , 7 € Ny, are iid.
1 N

0 o o

Representation of a Cannings model with population size N =7

3.1.3 Examples
1. Moran model (MM): v\") is a random permutation of (2,1,...,1,0).

2. Wright-Fisher model (WFM): v") has a symmetric multinomial distri-
bution, i.e., for all ny,...,ny € Ng withn; +---+ny = N,

NIN-N

P(V%T) :nl,...ﬂ/](\?]’) :nN) = m
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3.2 Descendants and extinction probability

3.2.1 Def. (Descendants)
Forie {0,...,N} let X\ denote the number of descendants of the individ-

uals 1 to ¢ of generation 0 in generation r € Ny. The process X := (X,(i))TeNO
is called descendant process or forward process.

Rem.
It is easily seen that X is a HMC with state space {0,..., N}, initial state
0, = k| X = j) given by

T

X[()i) = ¢ and transition probabilities 7, := P(X
i = P(XY =k) = Ply+---+v;=k), jke{0,...,N},

where v; 1= 1/1-(0), i € [N].

3.2.2 Example
For the WFM, vy + - - - + v; has a binomial distribution with parameters N
and p; == j/N, ie.

- = () (-2)

3.2.3 Def. (Extinction Probability)
Let N € N. Fori € {0,...,N} let

¢ = P(XY =0 eventually) = P( U (X = ()}) = lim P(X =0)
7—00
reNg

denote the extinction probability of the descendants of i individuals.

3.2.4 Theorem

The process X := (Xﬁi))TGNO is a nonnegative bounded martingale, which

converges a.s. and in LP (p > 0) asr — oo to ar.v. X8 and (Xr(i))TeNOU{OO} is

a martingale. If P(vy = 1) < 1, then the states 1, ..., N —1 are transient and
Xé? takes a.s. the values 0 and N with probability q; and 1 — q; respectively.

Proof. ‘
For all j € {0,..., N} with P(X" = j) > 0,

N N
BX XD =j) = Y kP(XD =k XD =j) = kmy
k=0 k=0

N
= ka(yl+...+yj:k):E(V1+...+yj):j.
k=0
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= X is a nonnegative martingale (Exercise 1.3.2).

Let p > 0. sup,cy, |X7£i)]p < NP, = X is p-times uniformly integrable, and
hence converges a.s. and in LP (see Bauer, ‘Probability Theory’, Corollary

19.4) toar.v. X such that (Xr(i))reNOU{oo} is still a martingale. Assume now
that P(r; =1) < 1. Then® fori e {1,...,N — 1}

Z Ty = P(V1++VZ>Z) > 0.
J=i+1

From a state ¢ € {1,...,N — 1} one reaches in one step a state j > i
with positive probability. State space is finite. = One reaches (iteratively)
from a state ¢ after a finite number n; € N of steps the absorbing state
N with positive probability, i.e. WE;\L;') > 0. Define n := max(ny,...,nx_1).
= 7T§N) > 771(]7\7) %Nm) = Wfﬁf) > 0. From Wég) = 71'](\7,1])\, = 1 it follows that

info<i<n (m;0 4 7T(n)> > 0. Thus, for m € N

PO < XY < N)

= D PO<XD <NIXQ, =0 PX{, ) =)
N-1 '

= Y PO<XP <N)P(XJ), ) =)
j=1
N—-1

= Y (-aly =) PIXY, ) =13)
1

J
: N T (n) (n)
< ozP(O<Xn( y <N) witha:=1 ogl?ng(Wm + ) < 1.
Induction on m. = P(0 < X\ < N)<a™VmeN.

X0 o XxW. = PO< X8 < N)< lim o™ =0.

m — 0o m—00

d .
s Xéé) it follows that

T — 00

= P(X{ € {0,N}) =1. From X"

D —=0) = lim P(XY =0) = P(XY =0 eventually) = g¢

=00

2The assumption vy +- - -+v; < i together with E(vy+---+v;) =i yields vy +- - - +v; = i
and from the exchangeability it follows that vy, + --- + v, = ¢ for arbitrary distinct
k1,...,k;. Substraction of two of such equations with k; := k, l; := [ and [; = k; for
j€{2,...,i} shows that v, = vy for all k,1 € {1,..., N}. Since Zi\;l v, = N it follows
that P(ry =1) = 1.
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and hence P(XC()? = N) =1 — ¢;. Moreover,

P(X® € {0, N} eventually) = P( U {X® € {o, N}})

reNp

= lim P(X? € {0,N}) = P(XY e {0,N}) = 1.

r—00

Thus, P(0 < X" < N oc-often) = 0.

= The states 1,..., N — 1 are transient. [
3.2.5 Lemma
Let N € N. ¢ = (qo,...,qn)' is an eigenvector of the transition matrix I1

to the eigenvalue 1, i.e. [lqg = q. Moreover, q is uniquely determined by this
fixed point equation and the boundary conditions gy = 1 and qy = 0.

Proof.
Obviously, ¢ = 1, gv = 0. By the MP and the time homogeneity, for i €
{0,...,N} and r € Ny

N N
PX=0) = > P =0|X( = j)my; = Y PXY =0)m.
=0 =0
N
Letting r — oo yields ¢; = Z q; mi;- Thus, Ilg = ¢q.
=0
Uniqueness: Let = (2g,...,2x)", o =2, 20 = 1 and 2y = 0. = [I"x =

zVreN =

N N
Ti = ZW§§)ﬂfj =Y P(X{)=j)z; Vie{0,... N}
J=0 §=0

X

d (i) 0) (i)

T — 00

Letting r — oo yields

N
ro= ) PXU=j)a; = oo+ (1-g)ay = a O
=0
Rem.
The map ¢ : [0, — [0, 1]V defined via p(z) = Ilz for all z €
[0, 1]+ is not contractive, since ||TI|| := sup, >, 7;; = 1. The Banach fixed

point theorem is hence not applicable to .
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3.2.6 Corollary (Extinction probability)
For all Cannings models, ¢; =1 —1i/N,i€{0,...,N}.

Proof.

First proof. By Lemma 3.2.5 it suffices to verify that ¢ = (qo,...,qn)" with
¢; == 1 —1i/N is a solution to the equation IIg = ¢. This is obvious, since for
ie{0,...,N},

N N . (i) .

j B(X i

(Mg); = Y mijq; = » Wij(l_ﬁ) = 1—% =l-5 =@ U
j=0 §j=0

Second proof. (X;)rengufoo} is a martingale. = N(1 — ¢;) = E(X&) =
E(X{)) =i = ¢=1—i/N. O

3.3 Ancestors

3.3.1 Def. (Ancestors)
Let N € N. For n,r € Ny withn < r let Rg) denote the number of ancestors
of all the N individuals of generation r in generation r — n.

Rem.

,,,,,

or backward process. The following lemma shows in particular that the tran-
sition probabilities

pi = PR =i R =)
neither depend on n nor on 7.

3.3.2 Lemma (Transition Probabilities)
Let n,r € Ny with n < r. Then, for all i,j € {0,..., N},

Pij = % mh;jeN . ((7’17/111) (nyz]g))

m1+---+mj:i

In particular, p; = E(vy - - 15).

Proof.
We have

AN J/
- -~

=:A

py = S P(RU), = j|vr D =k R = i) P/ = k| RY) = i),
k
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where the sum extends over all k = (ky, ..., ky) with P(v™—=0 =k, R =
i) > 0.

R is independent of vV L = B = P(v =k).
In order to compute A consider the following equivalent problem.

Given: N colors and one box. The box contains N balls (children), more
precisely, k; balls of color s (1 < s < N).

Now sample ¢ balls (without replacement) from the box. Question: What
is the probability, that among the ¢ drawn balls one sees exactly j colors?
Multivariate hypergeometric distribution. =

A ; () '(]'Z')(mjjv)7

where the sum extends over all m = (my,...,my) € Né\’ with mi+---+mpy =
iand [{s|1 <s< N,ms >0} =j. Plugging in A and B and interchanging
the two occurring sums yields

= () ()

m

The result follows from the exchangeability and since mg > 0 for exactly j
indices. U

3.3.3 Example
For the WFM,
(N)j o .
pij = Ti]S(%J),
where the numbers S(i,j) are the Stirling numbers of the second kind and
(N)j =N(N—-1)---(N—7+1).

Proof. This follows from Lemma 3.3.2, but the calculations are somewhat
tedious. We provide a different proof. In the WFM each child chooses at
random and independently of all other individuals its parent. Thus, p;; is
the probability to obtain exactly j nonempty boxes, when i balls (the chil-
dren) are allocated at random and independently to N boxes (the parents).
Altogether there are N* such allocations. For the j boxes which should be
nonempty, one has N(N —1)--- (N —j+1) = (N); choices, and S(i, j) is (by
def.) the number of ways to partition the i balls into j groups, where then
the balls of the k-th group, k € {1,...,j}, are allocated in box k.



