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3 Cannings models

3.1 Definition of the model

3.1.1 Def. (Exchangeability)
Finitely many r.v. X1, . . . , XN are called exchangeable, if (Xπ1, . . . , XπN)

d
=

(X1, . . . , XN) for all permutations π of [N ] := {1, . . . , N}.

Rem.
Xn, n ∈ [N ], iid. ⇒ Xn, n ∈ [N ], exchangeable. ⇒ Xn

d
= Xm ∀ n,m ∈ [N ].

The following model was introduced by Cannings (1974, 1975).

3.1.2 Def. (Cannings Model)
A population model with non-overlapping generations r ∈ N0 and fixed pop-
ulation size N ∈ N in each generation is called a Cannings model, if the

numbers ν
(r)
i of offspring of individual i ∈ [N ] alive in generation r ∈ N0

have the following properties.

(i) For each generation r ∈ N0 the r.v. ν
(r)
i , i ∈ [N ], are exchangeable with

ν
(r)
1 + · · ·+ ν

(r)
N = N .

(ii) The offspring vectors ν(r) := (ν
(r)
1 , . . . , ν

(r)
N ), r ∈ N0, are iid.

r

0

1

2

3

Representation of a Cannings model with population size N = 7

3.1.3 Examples
1. Moran model (MM): ν(r) is a random permutation of (2, 1, . . . , 1, 0).

2. Wright–Fisher model (WFM): ν(r) has a symmetric multinomial distri-
bution, i.e., for all n1, . . . , nN ∈ N0 with n1 + · · ·+ nN = N ,

P (ν
(r)
1 = n1, . . . , ν

(r)
N = nN) =

N !N−N

n1! · · ·nN !
.



3 CANNINGS MODELS 23

3.2 Descendants and extinction probability

3.2.1 Def. (Descendants)
For i ∈ {0, . . . , N} let X

(i)
r denote the number of descendants of the individ-

uals 1 to i of generation 0 in generation r ∈ N0. The process X := (X
(i)
r )r∈N0

is called descendant process or forward process.

Rem.
It is easily seen that X is a HMC with state space {0, . . . , N}, initial state

X
(i)
0 = i and transition probabilities πjk := P (X

(i)
r+1 = k |X(i)

r = j) given by

πjk = P (X
(j)
1 = k) = P (ν1 + · · ·+ νj = k), j, k ∈ {0, . . . , N},

where νi := ν
(0)
i , i ∈ [N ].

3.2.2 Example
For the WFM, ν1 + · · · + νj has a binomial distribution with parameters N
and pj := j/N , i.e.

πjk = B(N, pj, k) :=

(
N

k

)(
j

N

)k(
1− j

N

)N−k
.

3.2.3 Def. (Extinction Probability)
Let N ∈ N. For i ∈ {0, . . . , N} let

qi := P (X(i)
r = 0 eventually) = P

( ⋃
r∈N0

{X(i)
r = 0}

)
= lim

r→∞
P (X(i)

r = 0)

denote the extinction probability of the descendants of i individuals.

3.2.4 Theorem
The process X := (X

(i)
r )r∈N0 is a nonnegative bounded martingale, which

converges a.s. and in Lp (p > 0) as r →∞ to a r.v. X
(i)
∞ and (X

(i)
r )r∈N0∪{∞} is

a martingale. If P (ν1 = 1) < 1, then the states 1, . . . , N−1 are transient and

X
(i)
∞ takes a.s. the values 0 and N with probability qi and 1− qi respectively.

Proof.
For all j ∈ {0, . . . , N} with P (X

(i)
r = j) > 0,

E(X
(i)
r+1 |X(i)

r = j) =
N∑
k=0

kP (X
(i)
r+1 = k |X(i)

r = j) =
N∑
k=0

kπjk

=
N∑
k=0

kP (ν1 + · · ·+ νj = k) = E(ν1 + · · ·+ νj) = j.
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⇒ X is a nonnegative martingale (Exercise 1.3.2).

Let p > 0. supr∈N0
|X(i)

r |p ≤ Np. ⇒ X is p-times uniformly integrable, and
hence converges a.s. and in Lp (see Bauer, ‘Probability Theory’, Corollary

19.4) to a r.v. X
(i)
∞ such that (X

(i)
r )r∈N0∪{∞} is still a martingale. Assume now

that P (ν1 = 1) < 1. Then2 for i ∈ {1, . . . , N − 1}

N∑
j=i+1

πij = P (ν1 + · · ·+ νi > i) > 0.

From a state i ∈ {1, . . . , N − 1} one reaches in one step a state j > i
with positive probability. State space is finite. ⇒ One reaches (iteratively)
from a state i after a finite number ni ∈ N of steps the absorbing state
N with positive probability, i.e. π

(ni)
iN > 0. Define n := max(n1, . . . , nN−1).

⇒ π
(n)
iN ≥ π

(ni)
iN π

(n−ni)
NN = π

(ni)
iN > 0. From π

(n)
00 = π

(n)
NN = 1 it follows that

inf0≤i≤N(π
(n)
i0 + π

(n)
iN ) > 0. Thus, for m ∈ N

P (0 < X(i)
nm < N)

=
N−1∑
j=1

P (0 < X(i)
nm < N |X(i)

n(m−1) = j)P (X
(i)
n(m−1) = j)

=
N−1∑
j=1

P (0 < X(j)
n < N)P (X

(i)
n(m−1) = j)

=
N−1∑
j=1

(1− π(n)
j0 − π

(n)
jN )P (X

(i)
n(m−1) = j)

≤ αP (0 < X
(i)
n(m−1) < N) with α := 1− inf

0≤i≤N
(π

(n)
i0 + π

(n)
iN ) < 1.

Induction on m. ⇒ P (0 < X
(i)
nm < N) ≤ αm ∀ m ∈ N.

X
(i)
nm

d
−−−−−→
m→∞

X
(i)
∞ . ⇒ P (0 < X

(i)
∞ < N) ≤ lim

m→∞
αm = 0.

⇒ P (X
(i)
∞ ∈ {0, N}) = 1. From X

(i)
r

d
−−−−−→
r →∞

X
(i)
∞ it follows that

P (X(i)
∞ = 0) = lim

r→∞
P (X(i)

r = 0) = P (X(i)
r = 0 eventually) = qi

2The assumption ν1+· · ·+νi ≤ i together with E(ν1+· · ·+νi) = i yields ν1+· · ·+νi ≡ i
and from the exchangeability it follows that νk1

+ · · · + νki
≡ i for arbitrary distinct

k1, . . . , ki. Substraction of two of such equations with k1 := k, l1 := l and lj = kj for

j ∈ {2, . . . , i} shows that νk ≡ νl for all k, l ∈ {1, . . . , N}. Since
∑N

k=1 νk = N it follows
that P (ν1 = 1) = 1.



3 CANNINGS MODELS 25

and hence P (X
(i)
∞ = N) = 1− qi. Moreover,

P (X(i)
r ∈ {0, N} eventually) = P

( ⋃
r∈N0

{X(i)
r ∈ {0, N}}

)
= lim

r→∞
P (X(i)

r ∈ {0, N}) = P (X(i)
∞ ∈ {0, N}) = 1.

Thus, P (0 < X
(i)
r < N ∞-often) = 0.

⇒ The states 1, . . . , N − 1 are transient. �

3.2.5 Lemma
Let N ∈ N. q = (q0, . . . , qN)> is an eigenvector of the transition matrix Π
to the eigenvalue 1, i.e. Πq = q. Moreover, q is uniquely determined by this
fixed point equation and the boundary conditions q0 = 1 and qN = 0.

Proof.
Obviously, q0 = 1, qN = 0. By the MP and the time homogeneity, for i ∈
{0, . . . , N} and r ∈ N0

P (X
(i)
r+1 = 0) =

N∑
j=0

P (X
(i)
r+1 = 0 |X(i)

1 = j) πij =
N∑
j=0

P (X(j)
r = 0)πij.

Letting r →∞ yields qi =
N∑
j=0

qj πij. Thus, Πq = q.

Uniqueness: Let x = (x0, . . . , xN)>, Πx = x, x0 = 1 and xN = 0. ⇒ Πrx =
x ∀ r ∈ N. ⇒

xi =
N∑
j=0

π
(r)
ij xj =

N∑
j=0

P (X(i)
r = j)xj ∀ i ∈ {0, . . . , N}.

X
(i)
r

d
−−−−−→
r →∞

X
(i)
∞ , P (X

(i)
∞ = 0) = qi = 1− P (X

(i)
∞ = N).

Letting r →∞ yields

xi =
N∑
j=0

P (X(i)
∞ = j)xj = qi x0 + (1− qi)xN = qi. �

Rem.
The map ϕ : [0, 1]N+1 → [0, 1]N+1, defined via ϕ(x) := Πx for all x ∈
[0, 1]N+1, is not contractive, since ‖Π‖ := supi

∑
j πij = 1. The Banach fixed

point theorem is hence not applicable to ϕ.
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3.2.6 Corollary (Extinction probability)
For all Cannings models, qi = 1− i/N , i ∈ {0, . . . , N}.

Proof.
First proof. By Lemma 3.2.5 it suffices to verify that q = (q0, . . . , qN)> with
qi := 1− i/N is a solution to the equation Πq = q. This is obvious, since for
i ∈ {0, . . . , N},

(Πq)i =
N∑
j=0

πijqj =
N∑
j=0

πij

(
1− j

N

)
= 1−E(X

(i)
1 )

N
= 1− i

N
= qi. �

Second proof. (Xr)r∈N0∪{∞} is a martingale. ⇒ N(1 − qi) = E(X
(i)
∞ ) =

E(X
(i)
0 ) = i. ⇒ qi = 1− i/N . �

3.3 Ancestors

3.3.1 Def. (Ancestors)
Let N ∈ N. For n, r ∈ N0 with n ≤ r let R

(r)
n denote the number of ancestors

of all the N individuals of generation r in generation r − n.

Rem.
It is readily seen that (R

(r)
n )n∈{0,...,r} is a HMC, called the ancestral process

or backward process. The following lemma shows in particular that the tran-
sition probabilities

pij := P (R
(r)
n+1 = j |R(r)

n = i)

neither depend on n nor on r.

3.3.2 Lemma (Transition Probabilities)
Let n, r ∈ N0 with n < r. Then, for all i, j ∈ {0, . . . , N},

pij =

(
N
j

)(
N
i

) ∑
m1,...,mj∈N
m1+···+mj=i

E

((
ν1
m1

)
· · ·
(
νj
mj

))
.

In particular, pii = E(ν1 · · · νi).

Proof.
We have

pij =
∑
k

P (R
(r)
n+1 = j | ν(r−n−1) = k,R(r)

n = i)︸ ︷︷ ︸
=:A

P (ν(r−n−1) = k |R(r)
n = i)︸ ︷︷ ︸

=:B

,
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where the sum extends over all k = (k1, . . . , kN) with P (ν(r−n−1) = k,R
(r)
n =

i) > 0.

R
(r)
n is independent of ν(r−n−1)

d
= ν. ⇒ B = P (ν = k).

In order to compute A consider the following equivalent problem.

Given: N colors and one box. The box contains N balls (children), more
precisely, ks balls of color s (1 ≤ s ≤ N).

Now sample i balls (without replacement) from the box. Question: What
is the probability, that among the i drawn balls one sees exactly j colors?
Multivariate hypergeometric distribution. ⇒

A =
∑
m

(
k1
m1

)
· · ·
(
kN
mN

)(
N
i

) ,

where the sum extends over all m = (m1, . . . ,mN) ∈ NN
0 with m1+· · ·+mN =

i and |{s | 1 ≤ s ≤ N,ms > 0}| = j. Plugging in A and B and interchanging
the two occurring sums yields

pij =
∑
m

1(
N
i

)E

((
ν1
m1

)
· · ·
(
νN
mN

))
.

The result follows from the exchangeability and since ms > 0 for exactly j
indices. �

3.3.3 Example
For the WFM,

pij =
(N)j
N i

S(i, j),

where the numbers S(i, j) are the Stirling numbers of the second kind and
(N)j := N(N − 1) · · · (N − j + 1).

Proof. This follows from Lemma 3.3.2, but the calculations are somewhat
tedious. We provide a different proof. In the WFM each child chooses at
random and independently of all other individuals its parent. Thus, pij is
the probability to obtain exactly j nonempty boxes, when i balls (the chil-
dren) are allocated at random and independently to N boxes (the parents).
Altogether there are N i such allocations. For the j boxes which should be
nonempty, one has N(N−1) · · · (N−j+1) = (N)j choices, and S(i, j) is (by
def.) the number of ways to partition the i balls into j groups, where then
the balls of the k-th group, k ∈ {1, . . . , j}, are allocated in box k.


