3 Cannings models

3.1 Definition of the model

3.1.1 Def. (Exchangeability)

Finitely many r.v. X_{1}, \ldots, X_{N} are called exchangeable, if $\left(X_{\pi 1}, \ldots, X_{\pi N}\right) \stackrel{d}{=}$ $\left(X_{1}, \ldots, X_{N}\right)$ for all permutations π of $[N]:=\{1, \ldots, N\}$.

Rem.

$X_{n}, n \in[N]$, iid. $\Rightarrow X_{n}, n \in[N]$, exchangeable. $\Rightarrow X_{n} \stackrel{d}{=} X_{m} \forall n, m \in[N]$.

The following model was introduced by Cannings (1974, 1975).

3.1.2 Def. (Cannings Model)

A population model with non-overlapping generations $r \in \mathbb{N}_{0}$ and fixed population size $N \in \mathbb{N}$ in each generation is called a Cannings model, if the numbers $\nu_{i}^{(r)}$ of offspring of individual $i \in[N]$ alive in generation $r \in \mathbb{N}_{0}$ have the following properties.
(i) For each generation $r \in \mathbb{N}_{0}$ the r.v. $\nu_{i}^{(r)}, i \in[N]$, are exchangeable with $\nu_{1}^{(r)}+\cdots+\nu_{N}^{(r)}=N$.
(ii) The offspring vectors $\nu^{(r)}:=\left(\nu_{1}^{(r)}, \ldots, \nu_{N}^{(r)}\right), r \in \mathbb{N}_{0}$, are iid.

Representation of a Cannings model with population size $N=7$

3.1.3 Examples

1. Moran model $(M M): \nu^{(r)}$ is a random permutation of $(2,1, \ldots, 1,0)$.
2. Wright-Fisher model (WFM): $\nu^{(r)}$ has a symmetric multinomial distribution, i.e., for all $n_{1}, \ldots, n_{N} \in \mathbb{N}_{0}$ with $n_{1}+\cdots+n_{N}=N$,

$$
P\left(\nu_{1}^{(r)}=n_{1}, \ldots, \nu_{N}^{(r)}=n_{N}\right)=\frac{N!N^{-N}}{n_{1}!\cdots n_{N}!} .
$$

3.2 Descendants and extinction probability

3.2.1 Def. (Descendants)

For $i \in\{0, \ldots, N\}$ let $X_{r}^{(i)}$ denote the number of descendants of the individuals 1 to i of generation 0 in generation $r \in \mathbb{N}_{0}$. The process $X:=\left(X_{r}^{(i)}\right)_{r \in \mathbb{N}_{0}}$ is called descendant process or forward process.

Rem.

It is easily seen that X is a HMC with state space $\{0, \ldots, N\}$, initial state $X_{0}^{(i)}=i$ and transition probabilities $\pi_{j k}:=P\left(X_{r+1}^{(i)}=k \mid X_{r}^{(i)}=j\right)$ given by

$$
\pi_{j k}=P\left(X_{1}^{(j)}=k\right)=P\left(\nu_{1}+\cdots+\nu_{j}=k\right), \quad j, k \in\{0, \ldots, N\}
$$

where $\nu_{i}:=\nu_{i}^{(0)}, i \in[N]$.

3.2.2 Example

For the WFM, $\nu_{1}+\cdots+\nu_{j}$ has a binomial distribution with parameters N and $p_{j}:=j / N$, i.e.

$$
\pi_{j k}=B\left(N, p_{j}, k\right):=\binom{N}{k}\left(\frac{j}{N}\right)^{k}\left(1-\frac{j}{N}\right)^{N-k}
$$

3.2.3 Def. (Extinction Probability)

Let $N \in \mathbb{N}$. For $i \in\{0, \ldots, N\}$ let
$q_{i}:=P\left(X_{r}^{(i)}=0\right.$ eventually $)=P\left(\bigcup_{r \in \mathbb{N}_{0}}\left\{X_{r}^{(i)}=0\right\}\right)=\lim _{r \rightarrow \infty} P\left(X_{r}^{(i)}=0\right)$
denote the extinction probability of the descendants of i individuals.

3.2.4 Theorem

The process $X:=\left(X_{r}^{(i)}\right)_{r \in \mathbb{N}_{0}}$ is a nonnegative bounded martingale, which converges a.s. and in $L^{p}(p>0)$ as $r \rightarrow \infty$ to a r.v. $X_{\infty}^{(i)}$ and $\left(X_{r}^{(i)}\right)_{r \in \mathbb{N}_{0} \cup\{\infty\}}$ is a martingale. If $P\left(\nu_{1}=1\right)<1$, then the states $1, \ldots, N-1$ are transient and $X_{\infty}^{(i)}$ takes a.s. the values 0 and N with probability q_{i} and $1-q_{i}$ respectively.

Proof.

For all $j \in\{0, \ldots, N\}$ with $P\left(X_{r}^{(i)}=j\right)>0$,

$$
\begin{aligned}
\mathrm{E}\left(X_{r+1}^{(i)} \mid X_{r}^{(i)}=j\right) & =\sum_{k=0}^{N} k P\left(X_{r+1}^{(i)}=k \mid X_{r}^{(i)}=j\right)=\sum_{k=0}^{N} k \pi_{j k} \\
& =\sum_{k=0}^{N} k P\left(\nu_{1}+\cdots+\nu_{j}=k\right)=\mathrm{E}\left(\nu_{1}+\cdots+\nu_{j}\right)=j
\end{aligned}
$$

$\Rightarrow X$ is a nonnegative martingale (Exercise 1.3.2).
Let $p>0 . \sup _{r \in \mathbb{N}_{0}}\left|X_{r}^{(i)}\right|^{p} \leq N^{p} . \Rightarrow X$ is p-times uniformly integrable, and hence converges a.s. and in L^{p} (see Bauer, 'Probability Theory', Corollary 19.4) to a r.v. $X_{\infty}^{(i)}$ such that $\left(X_{r}^{(i)}\right)_{r \in \mathbb{N}_{0} \cup\{\infty\}}$ is still a martingale. Assume now that $P\left(\nu_{1}=1\right)<1$. Then ${ }^{2}$ for $i \in\{1, \ldots, N-1\}$

$$
\sum_{j=i+1}^{N} \pi_{i j}=P\left(\nu_{1}+\cdots+\nu_{i}>i\right)>0
$$

From a state $i \in\{1, \ldots, N-1\}$ one reaches in one step a state $j>i$ with positive probability. State space is finite. \Rightarrow One reaches (iteratively) from a state i after a finite number $n_{i} \in \mathbb{N}$ of steps the absorbing state N with positive probability, i.e. $\pi_{i N}^{\left(n_{i}\right)}>0$. Define $n:=\max \left(n_{1}, \ldots, n_{N-1}\right)$. $\Rightarrow \pi_{i N}^{(n)} \geq \pi_{i N}^{\left(n_{i}\right)} \pi_{N N}^{\left(n-n_{i}\right)}=\pi_{i N}^{\left(n_{i}\right)}>0$. From $\pi_{00}^{(n)}=\pi_{N N}^{(n)}=1$ it follows that $\inf _{0 \leq i \leq N}\left(\pi_{i 0}^{(n)}+\pi_{i N}^{(n)}\right)>0$. Thus, for $m \in \mathbb{N}$

$$
\begin{aligned}
P(0 & \left.<X_{n m}^{(i)}<N\right) \\
& =\sum_{j=1}^{N-1} P\left(0<X_{n m}^{(i)}<N \mid X_{n(m-1)}^{(i)}=j\right) P\left(X_{n(m-1)}^{(i)}=j\right) \\
& =\sum_{j=1}^{N-1} P\left(0<X_{n}^{(j)}<N\right) P\left(X_{n(m-1)}^{(i)}=j\right) \\
& =\sum_{j=1}^{N-1}\left(1-\pi_{j 0}^{(n)}-\pi_{j N}^{(n)}\right) P\left(X_{n(m-1)}^{(i)}=j\right) \\
& \leq \alpha P\left(0<X_{n(m-1)}^{(i)}<N\right) \quad \text { with } \alpha:=1-\inf _{0 \leq i \leq N}\left(\pi_{i 0}^{(n)}+\pi_{i N}^{(n)}\right)<1 .
\end{aligned}
$$

Induction on $m . \Rightarrow P\left(0<X_{n m}^{(i)}<N\right) \leq \alpha^{m} \forall m \in \mathbb{N}$.
$X_{n m}^{(i)} \xrightarrow[m \rightarrow \infty]{d} X_{\infty}^{(i)} . \Rightarrow P\left(0<X_{\infty}^{(i)}<N\right) \leq \lim _{m \rightarrow \infty} \alpha^{m}=0$.
$\Rightarrow P\left(X_{\infty}^{(i)} \in\{0, N\}\right)=1$. From $X_{r}^{(i)} \xrightarrow[r \rightarrow \infty]{d} X_{\infty}^{(i)}$ it follows that

$$
P\left(X_{\infty}^{(i)}=0\right)=\lim _{r \rightarrow \infty} P\left(X_{r}^{(i)}=0\right)=P\left(X_{r}^{(i)}=0 \text { eventually }\right)=q_{i}
$$

[^0]and hence $P\left(X_{\infty}^{(i)}=N\right)=1-q_{i}$. Moreover,
\[

$$
\begin{aligned}
P\left(X_{r}^{(i)}\right. & \in\{0, N\} \text { eventually })=P\left(\bigcup_{r \in \mathbb{N}_{0}}\left\{X_{r}^{(i)} \in\{0, N\}\right\}\right) \\
& =\lim _{r \rightarrow \infty} P\left(X_{r}^{(i)} \in\{0, N\}\right)=P\left(X_{\infty}^{(i)} \in\{0, N\}\right)=1
\end{aligned}
$$
\]

Thus, $P\left(0<X_{r}^{(i)}<N \infty\right.$-often $)=0$.
\Rightarrow The states $1, \ldots, N-1$ are transient.

3.2.5 Lemma

Let $N \in \mathbb{N} . q=\left(q_{0}, \ldots, q_{N}\right)^{\top}$ is an eigenvector of the transition matrix Π to the eigenvalue 1, i.e. $\Pi q=q$. Moreover, q is uniquely determined by this fixed point equation and the boundary conditions $q_{0}=1$ and $q_{N}=0$.

Proof.

Obviously, $q_{0}=1, q_{N}=0$. By the MP and the time homogeneity, for $i \in$ $\{0, \ldots, N\}$ and $r \in \mathbb{N}_{0}$

$$
P\left(X_{r+1}^{(i)}=0\right)=\sum_{j=0}^{N} P\left(X_{r+1}^{(i)}=0 \mid X_{1}^{(i)}=j\right) \pi_{i j}=\sum_{j=0}^{N} P\left(X_{r}^{(j)}=0\right) \pi_{i j}
$$

Letting $r \rightarrow \infty$ yields $q_{i}=\sum_{j=0}^{N} q_{j} \pi_{i j}$. Thus, $\Pi q=q$.
Uniqueness: Let $x=\left(x_{0}, \ldots, x_{N}\right)^{\top}, \Pi x=x, x_{0}=1$ and $x_{N}=0 . \Rightarrow \Pi^{r} x=$ $x \forall r \in \mathbb{N}$. \Rightarrow

$$
\begin{gathered}
x_{i}=\sum_{j=0}^{N} \pi_{i j}^{(r)} x_{j}=\sum_{j=0}^{N} P\left(X_{r}^{(i)}=j\right) x_{j} \quad \forall i \in\{0, \ldots, N\} . \\
X_{r}^{(i)} \xrightarrow[r \rightarrow \infty]{d} X_{\infty}^{(i)}, P\left(X_{\infty}^{(i)}=0\right)=q_{i}=1-P\left(X_{\infty}^{(i)}=N\right) .
\end{gathered}
$$

Letting $r \rightarrow \infty$ yields

$$
x_{i}=\sum_{j=0}^{N} P\left(X_{\infty}^{(i)}=j\right) x_{j}=q_{i} x_{0}+\left(1-q_{i}\right) x_{N}=q_{i} .
$$

Rem.

The map $\varphi:[0,1]^{N+1} \rightarrow[0,1]^{N+1}$, defined via $\varphi(x):=\Pi x$ for all $x \in$ $[0,1]^{N+1}$, is not contractive, since $\|\Pi\|:=\sup _{i} \sum_{j} \pi_{i j}=1$. The Banach fixed point theorem is hence not applicable to φ.

3.2.6 Corollary (Extinction probability)

For all Cannings models, $q_{i}=1-i / N, i \in\{0, \ldots, N\}$.

Proof.

First proof. By Lemma 3.2.5 it suffices to verify that $q=\left(q_{0}, \ldots, q_{N}\right)^{\top}$ with $q_{i}:=1-i / N$ is a solution to the equation $\Pi q=q$. This is obvious, since for $i \in\{0, \ldots, N\}$,
$(\Pi q)_{i}=\sum_{j=0}^{N} \pi_{i j} q_{j}=\sum_{j=0}^{N} \pi_{i j}\left(1-\frac{j}{N}\right)=1-\frac{\mathrm{E}\left(X_{1}^{(i)}\right)}{N}=1-\frac{i}{N}=q_{i}$.
Second proof. $\left(X_{r}\right)_{r \in \mathbb{N}_{0} \cup\{\infty\}}$ is a martingale. $\Rightarrow N\left(1-q_{i}\right)=\mathrm{E}\left(X_{\infty}^{(i)}\right)=$ $\mathrm{E}\left(X_{0}^{(i)}\right)=i . \Rightarrow q_{i}=1-i / N$.

3.3 Ancestors

3.3.1 Def. (Ancestors)

Let $N \in \mathbb{N}$. For $n, r \in \mathbb{N}_{0}$ with $n \leq r$ let $R_{n}^{(r)}$ denote the number of ancestors of all the N individuals of generation r in generation $r-n$.

Rem.

It is readily seen that $\left(R_{n}^{(r)}\right)_{n \in\{0, \ldots, r\}}$ is a HMC, called the ancestral process or backward process. The following lemma shows in particular that the transition probabilities

$$
p_{i j}:=P\left(R_{n+1}^{(r)}=j \mid R_{n}^{(r)}=i\right)
$$

neither depend on n nor on r.

3.3.2 Lemma (Transition Probabilities)

Let $n, r \in \mathbb{N}_{0}$ with $n<r$. Then, for all $i, j \in\{0, \ldots, N\}$,

$$
p_{i j}=\frac{\binom{N}{j}}{\binom{N}{i}} \sum_{\substack{m_{1}, \ldots, m_{j} \in \mathbb{N} \\ m_{1}+\cdots+m_{j}=i}} \mathrm{E}\left(\binom{\nu_{1}}{m_{1}} \cdots\binom{\nu_{j}}{m_{j}}\right)
$$

In particular, $p_{i i}=\mathrm{E}\left(\nu_{1} \cdots \nu_{i}\right)$.

Proof.

We have

$$
p_{i j}=\sum_{k} \underbrace{P\left(R_{n+1}^{(r)}=j \mid \nu^{(r-n-1)}=k, R_{n}^{(r)}=i\right)}_{=: A} \underbrace{P\left(\nu^{(r-n-1)}=k \mid R_{n}^{(r)}=i\right)}_{=: B},
$$

where the sum extends over all $k=\left(k_{1}, \ldots, k_{N}\right)$ with $P\left(\nu^{(r-n-1)}=k, R_{n}^{(r)}=\right.$ i) >0.
$R_{n}^{(r)}$ is independent of $\nu^{(r-n-1)} \stackrel{d}{=} \nu . \Rightarrow B=P(\nu=k)$.
In order to compute A consider the following equivalent problem.
Given: N colors and one box. The box contains N balls (children), more precisely, k_{s} balls of color $s(1 \leq s \leq N)$.
Now sample i balls (without replacement) from the box. Question: What is the probability, that among the i drawn balls one sees exactly j colors? Multivariate hypergeometric distribution. \Rightarrow

$$
A=\sum_{m} \frac{\binom{k_{1}}{m_{1}} \cdots\binom{k_{N}}{m_{N}}}{\binom{N}{i}}
$$

where the sum extends over all $m=\left(m_{1}, \ldots, m_{N}\right) \in \mathbb{N}_{0}^{N}$ with $m_{1}+\cdots+m_{N}=$ i and $\left|\left\{s \mid 1 \leq s \leq N, m_{s}>0\right\}\right|=j$. Plugging in A and B and interchanging the two occurring sums yields

$$
p_{i j}=\sum_{m} \frac{1}{\binom{N}{i}} \mathrm{E}\left(\binom{\nu_{1}}{m_{1}} \cdots\binom{\nu_{N}}{m_{N}}\right) .
$$

The result follows from the exchangeability and since $m_{s}>0$ for exactly j indices.

3.3.3 Example

For the WFM,

$$
p_{i j}=\frac{(N)_{j}}{N^{i}} S(i, j)
$$

where the numbers $S(i, j)$ are the Stirling numbers of the second kind and $(N)_{j}:=N(N-1) \cdots(N-j+1)$.

Proof. This follows from Lemma 3.3.2, but the calculations are somewhat tedious. We provide a different proof. In the WFM each child chooses at random and independently of all other individuals its parent. Thus, $p_{i j}$ is the probability to obtain exactly j nonempty boxes, when i balls (the children) are allocated at random and independently to N boxes (the parents). Altogether there are N^{i} such allocations. For the j boxes which should be nonempty, one has $N(N-1) \cdots(N-j+1)=(N)_{j}$ choices, and $S(i, j)$ is (by def.) the number of ways to partition the i balls into j groups, where then the balls of the k-th group, $k \in\{1, \ldots, j\}$, are allocated in box k.

[^0]: ${ }^{2}$ The assumption $\nu_{1}+\cdots+\nu_{i} \leq i$ together with $\mathrm{E}\left(\nu_{1}+\cdots+\nu_{i}\right)=i$ yields $\nu_{1}+\cdots+\nu_{i} \equiv i$ and from the exchangeability it follows that $\nu_{k_{1}}+\cdots+\nu_{k_{i}} \equiv i$ for arbitrary distinct k_{1}, \ldots, k_{i}. Substraction of two of such equations with $k_{1}:=k, l_{1}:=l$ and $l_{j}=k_{j}$ for $j \in\{2, \ldots, i\}$ shows that $\nu_{k} \equiv \nu_{l}$ for all $k, l \in\{1, \ldots, N\}$. Since $\sum_{k=1}^{N} \nu_{k}=N$ it follows that $P\left(\nu_{1}=1\right)=1$.

