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5 Discrete coalescent

Given: Cannings model with constant population size N as in Section 3.

The gen. are now labeled backwards in time, i.e. r = 0 is the (current)
gen. of the offspring, r = 1 the gen. of the parents, r = 2 the gen. of the
grandparents and so on. Sample n (≤ N) individuals from gen. 0 and consider
their ancestors.

5.1 Def.
For r ∈ N0 define a random relation Rr on [n] := {1, . . . , n} via

(i, j) ∈ Rr :⇐⇒ The individuals i and j have a common ancestor
in gen. r, i.e. r gen. backwards in the past.

Clearly, Rr is a random equivalence relation on [n], i.e. Rr is a r.v. taking
values in En, the (finite) set of equivalence relations on [n]. Note that Rr =

R(N,n)
r depends on N and n.

5.2 Theorem and Def. (Discrete Coalescent)
R := (Rr)r∈N0 is a HMC with state space En and initial state R0 ≡ ∆n :=
{(i, i) | 1 ≤ i ≤ n} (diagonal relation). The transition probabilities pξη :=
P (Rr = η |Rr−1 = ξ), ξ, η ∈ En, are pξη = 0 for ξ 6⊆ η and

pξη =
(N)a
(N)b

E((ν1)b1 · · · (νa)ba) for ξ ⊆ η,

where (x)0 := 1 and (x)k := x(x− 1) · · · (x− k+ 1), k ∈ N. Here a = |η| and
b = |ξ| are the number of (equivalence) classes of η and ξ respectively, and
b1, . . . , ba are the group sizes of merging classes of ξ (⇒ b1 + · · ·+ ba = b).

R is called (discrete) n-coalescent.

(Latin: coalescere = to coalesce, to union)

Proof.
Clearly, R0 = ∆n and pξη = 0 for ξ 6⊆ η. Assume now that ξ ⊆ η. Rr−1, ν

(r)

independent. ⇒

P (Rr = η |Rr−1 = ξ) =
∑
k

P (Rr = η |Rr−1 = ξ, ν(r) = k)P (ν(r) = k),

where the sum extends over all k = (k1, . . . , kN) with P (ν(r) = k) > 0. In
order to calculate P (Rr = η |Rr−1 = ξ, ν(r) = k) consider the following
experiment: Assume that N colors are given. A box contains N balls (the
children), more precisely, ki balls of color i, i ∈ [N ]. Sample b balls without
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replacement. The probability that among the b drawn balls there are exactly
bj balls of the same color, j ∈ {1, . . . , a}, is

P (Rr = η |Rr−1 = ξ, ν(r) = k) =
N∑

i1,...,ia=1
all distinct

(ki1)b1 · · · (kia)ba
(N)b

.

Note that i1, . . . , ia are the numbers of the existing colors. ⇒

P (Rr = η |Rr−1 = ξ) =
∑
k

P (ν(r) = k)
N∑

i1,...,ia=1
all distinct

(ki1)b1 · · · (kia)ba
(N)b

=
1

(N)b

N∑
i1,...,ia=1
all distinct

E((νi1)b1 · · · (νia)ba) =
(N)a
(N)b

E((ν1)b1 · · · (νa)ba),

since ν1, . . . , νN are exchangeable. In particular, this probability does not
depend on r and n. The calculation does not change if {Rr−1 = ξ} is replaced
by {Rr−1 = ξ,Rr−2 = ξr−2, . . . ,R1 = ξ1}. ⇒ R is a HMC. �

5.3 Example
WFM: pξη =

(N)a
N b

for ξ ⊆ η, pξη = 0 otherwise.

Proof. (X1, . . . , XN)
d
= Mn(N, p1, . . . , pN) has joint factorial moments

E((X1)b1 · · · (Xa)ba) = (N)bp
b1
1 · · · pbaa (exercise). Since p1 = · · · = pN = 1/N

the result follows from Theorem 5.2. �

MM: pξη =
2

N(N − 1)
for ξ ⊆ η with |ξ| = |η|+ 1,

pξξ = 1− b(b− 1)

N(N − 1)
, pξη = 0 otherwise.

Proof. For ξ ⊆ η with b = a + 1 and, hence, b1 = 2, b2 = · · · = ba = 1 (the
bi’s w.l.o.g. ordered by size) by Theorem 5.2

pξη =
(N)a
(N)b

E((ν1)2ν2 · · · νa) =
(N)a
(N)b

2P (ν1 = 2, ν2 = · · · = νa = 1)

=
(N)a
(N)b

2
N − a

N(N − 1)
=

2

N(N − 1)
.

In the MM only two classes coalesce and the assertion follows. �

5.4 Def. (Transition Functions)
For a, b1, . . . , ba ∈ N with b := b1 + · · ·+ ba ≤ N define

Φa(b1, . . . , ba) :=
(N)a
(N)b

E((ν1)b1 · · · (νa)ba) .
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By Theorem 5.2, the transition matrix of R is uniquely determined by
Φ1, . . . ,Φn. We call Φ1, . . . ,Φn the transition functions of R.

5.5 Lemma (Consistence of the Transition Functions)
For a, b1, . . . , ba ∈ N with b := b1 + · · ·+ ba < N ,

Φa+1(b1, . . . , ba, 1) = Φa(b1, . . . , ba)−
a∑
i=1

Φa(b1, . . . , bi−1, bi + 1, bi+1, . . . , ba)

Proof.
Exchangeability of ν1, . . . , νN and ν1 + · · ·+ νN = N . ⇒

(N − a)E
(
(ν1)b1 · · · (νa)baνa+1

)
= E

(
(ν1)b1 · · · (νa)ba(νa+1 + · · ·+ νN)

)
= E

(
(ν1)b1 · · · (νa)ba(N − ν1 − · · · − νa)

)
= E

(
(ν1)b1 · · · (νa)ba(N − b− (ν1 − b1)− · · · − (νa − ba))

)
= (N − b)E

(
(ν1)b1 · · · (νa)ba

)
−

a∑
i=1

E
(
(ν1)b1 · · · (νi)bi+1 · · · (νa)ba

)
.

The assertion follows by multiplying both sides with (N)a/(N)b+1. �

5.6 Def. (Restriction)
For m,n ∈ N with m ≤ n let %nm : En → Em denote the natural restriction
defined via %nm(ξ) := {(i, j) ∈ ξ | 1 ≤ i, j ≤ m} ∀ ξ ∈ En.

5.7 Theorem (Natural Coupling)
Let (Rr)r∈N0 be a n-coalescent with transition functions Φ1, . . . ,Φn and let
m ∈ [n]. Then the process (%nm ◦ Rr)r∈N0 is a m-coalescent with transition
functions Φ1, . . . ,Φm.

Proof.
%nm = %m+1,m ◦ · · · ◦ %n,n−1. ⇒ W.l.o.g. m = n − 1. Define f := %n,n−1. Let
us verify that, for ξ ∈ En and η̃ ∈ Em,

P (f ◦ Rr = η̃ |Rr−1 = ξ) =
∑

η∈f−1(η̃)

pξη (+)

only depends via ξ̃ := f(ξ) on ξ. If ξ̃ 6⊆ η̃, then ξ 6⊆ η, i.e. pξη = 0 for all
η ∈ f−1(η̃) and (+) is 0. Assume now that ξ̃ ⊆ η̃. Let C1, . . . , Ca denote the
classes of η̃ and Cαβ, α ∈ {1, . . . , a}, β ∈ {1, . . . , bα}, the classes of ξ̃ such

that Cα =
⋃bα
β=1Cαβ. Let η0 ∈ En be the equivalence relation with classes
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C1, . . . , Ca, {n}, and for i ∈ {1, . . . , a} let ηi ∈ En be the equivalence relation
with classes C1, . . . , Ci−1, Ci ∪ {n}, Ci+1, . . . , Ca.

Assume first that {n} is not a class of ξ. Then there exists i ∈ {1, . . . , a} and
j ∈ {1, . . . , bi} such that Cij ∪ {n} is a class of ξ. The relation η = ηi is then
the only one satisfying the conditions ξ ⊆ η and f(η) = η̃. Hence, (+) is in
this case equal to pξηi = Φa(b1, . . . , ba).

Assume now that {n} is a class of ξ. Then, exactly the relations η ∈
{η0, . . . , ηa} satisfy the conditions ξ ⊆ η and f(η) = η̃. ⇒

∑
η∈f−1(η̃)

pξη =
a∑
i=0

pξηi

= Φa+1(b1, . . . , ba, 1) +
a∑
i=1

Φa(b1, . . . , bi−1, bi + 1, bi+1, . . . , ba)

= Φa(b1, . . . , ba),

by Lemma 5.5. ⇒ (+) only depends via ξ̃ on ξ. We have

{f ◦ Rr−1 = ξ̃} =
⋃

ξ∈f−1(ξ̃)

{Rr−1 = ξ}.

Thus, by Exercise 2.1.4, the transition probabilities pξ̃η̃ := P (f ◦Rr = η̃ | f ◦
Rr−1 = ξ̃) are equal to 0 for ξ̃ 6⊆ η̃ and for ξ̃ ⊆ η̃ equal to

pξ̃η̃ = Φa(b1, . . . , ba).

R is a MC. ⇒ The calculation does not change if {f ◦Rr−1 = ξ̃} is replaced
by {f ◦ Rr−1 = ξ̃, f ◦ Rr−2 = ξ̃r−2, . . . , f ◦ R0 = ξ̃0}. ⇒ (f ◦ Rr)r∈N0 is a
HMC. �

5.8 Lemma (Monotonicity of the Transition Functions)
For 1 ≤ l ≤ j ≤ N and k1, . . . , kj,m1, . . . ,ml ∈ N with k1 ≥ m1, . . . , kl ≥ ml

and k1 + · · ·+ kj ≤ N ,

Φj(k1, . . . , kj) ≤ Φl(m1, . . . ,ml) , (∗)

i.e. as more classes coalesce, as less likely this is.
In particular, Φj(k1, . . . , kj) ≤ Φ1(1) = E(ν1) = 1.

Proof.
Inductively on the difference d := j − l ∈ {0, . . . , N − 1}. Lemma 5.5. ⇒
Φl(m1, . . . ,ml) ≥ Φl(m1, . . . ,mi−1,mi + 1,mi+1, . . . ,ml) for i ∈ {1, . . . , l}.
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Iteratively, (∗) follows for j = l, i.e. for d = 0. Again by Lemma 5.5 and (∗)
for d = 0,

Φl(m1, . . . ,ml)
Lem. 5.5

≥ Φl+1(m1, . . . ,ml, 1)
(∗) for d = 0
≥ Φl+1(k1, . . . , kl+1).

Thus, (∗) holds for j = l + 1, i.e. for d = 1. Applying (∗) for d = 1 exactly
(j − l)-times yields

Φl(m1, . . . ,ml) ≥ Φl+1(k1, . . . , kl+1)

≥ Φl+2(k1, . . . , kl+2)

≥ · · · ≥ Φj−1(k1, . . . , kj−1) ≥ Φj(k1, . . . , kj). �

5.9 Def. (Coalescence Probability)
Let cN denote the probability that two individuals, randomly sampled from
some gen., have a common ancestor one gen. backwards, i.e.

cN := Φ1(2) =
N

(N)2
E((ν1)2) =

Var(ν1)

N − 1
.

cN is called the coalescence probability

5.10 Example
WFM: cN =

1

N
. MM: cN =

2

N(N − 1)
.

5.11 Example (Time to MRCA)
Consider 2 individuals of gen. 0. Let TN denote the number of gen. which one
has to go back to the past until you find the (most recent) common ancestor
(MRCA) of these two individuals.

⇒ P (TN = k) = cN(1 − cN)k−1, k ∈ N, i.e. TN − 1
d
= G(cN) (geometric

distribution).

⇒ E(TN) =
1

cN
, Var(TN) =

1− cN
c2N

=
1

cN

(
1

cN
− 1

)
.

WFM: E(TN) = N , Var(TN) = N(N − 1).

MM: E(TN) =
N2 −N

2
∼ N2

2
, Var(TN) =

N2 −N
2

(
N2 −N

2
− 1

)
∼ N4

4
.

Rem.
Ne := 1/cN = E(TN) is called the effective population size. Example 5.11
indicates that Ne is a measure for the speed of the evolution. Under mild
conditions, the time-scaled ancestral process (R(N,n)

[t/cN ])t≥0 converges in distri-

bution as N → ∞ to a continuous-time limiting process (R
(n)
t )t≥0, which
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is called an n-coalescent. The most prominent such limiting process is the
Kingman n-coalescent (Kingman, 1982), allowing only for binary mergers of
ancestral lineages. In general, these limiting processes allow for multiple col-
lisions (Λ-coalescent) or even simultaneous multiple collisions (Ξ-coalescent)
of ancestral lineages (Pitman 1999, Sagitov 1999, Schweinsberg 2000, M. and
Sagitov 2001).


