5 Discrete coalescent

Given: Cannings model with constant population size N as in Section 3.

The gen. are now labeled backwards in time, i.e. r = 0 is the (current) gen. of the offspring, r = 1 the gen. of the parents, r = 2 the gen. of the grandparents and so on. Sample $n (\leq N)$ individuals from gen. 0 and consider their ancestors.

5.1 Def.

For $r \in \mathbb{N}_0$ define a random relation \mathcal{R}_r on $[n] := \{1, \ldots, n\}$ via

 $(i,j) \in \mathcal{R}_r \iff$ The individuals *i* and *j* have a common ancestor in gen. *r*, i.e. *r* gen. backwards in the past.

Clearly, \mathcal{R}_r is a random equivalence relation on [n], i.e. \mathcal{R}_r is a r.v. taking values in \mathcal{E}_n , the (finite) <u>set of equivalence relations</u> on [n]. Note that $\mathcal{R}_r = \mathcal{R}_r^{(N,n)}$ depends on N and n.

5.2 Theorem and Def. (Discrete Coalescent)

 $\mathcal{R} := (\mathcal{R}_r)_{r \in \mathbb{N}_0}$ is a HMC with state space \mathcal{E}_n and initial state $\mathcal{R}_0 \equiv \Delta_n := \{(i,i) \mid 1 \leq i \leq n\}$ (diagonal relation). The transition probabilities $p_{\xi\eta} := P(\mathcal{R}_r = \eta \mid \mathcal{R}_{r-1} = \xi), \, \xi, \eta \in \mathcal{E}_n$, are $p_{\xi\eta} = 0$ for $\xi \not\subseteq \eta$ and

$$p_{\xi\eta} = \frac{(N)_a}{(N)_b} \mathbf{E}((\nu_1)_{b_1} \cdots (\nu_a)_{b_a}) \quad \text{for } \xi \subseteq \eta,$$

where $(x)_0 := 1$ and $(x)_k := x(x-1)\cdots(x-k+1)$, $k \in \mathbb{N}$. Here $a = |\eta|$ and $b = |\xi|$ are the number of (equivalence) classes of η and ξ respectively, and b_1, \ldots, b_a are the group sizes of merging classes of $\xi \iff b_1 + \cdots + b_a = b$).

 \mathcal{R} is called (discrete) <u>*n*-coalescent</u>.

(Latin: coalescere = to coalesce, to union)

Proof.

Clearly, $\mathcal{R}_0 = \Delta_n$ and $p_{\xi\eta} = 0$ for $\xi \not\subseteq \eta$. Assume now that $\xi \subseteq \eta$. $\mathcal{R}_{r-1}, \nu^{(r)}$ independent. \Rightarrow

$$P(\mathcal{R}_{r} = \eta \,|\, \mathcal{R}_{r-1} = \xi) = \sum_{k} P(\mathcal{R}_{r} = \eta \,|\, \mathcal{R}_{r-1} = \xi, \nu^{(r)} = k) P(\nu^{(r)} = k),$$

where the sum extends over all $k = (k_1, \ldots, k_N)$ with $P(\nu^{(r)} = k) > 0$. In order to calculate $P(\mathcal{R}_r = \eta | \mathcal{R}_{r-1} = \xi, \nu^{(r)} = k)$ consider the following experiment: Assume that N colors are given. A box contains N balls (the children), more precisely, k_i balls of color $i, i \in [N]$. Sample b balls without replacement. The probability that among the *b* drawn balls there are exactly b_j balls of the same color, $j \in \{1, \ldots, a\}$, is

$$P(\mathcal{R}_{r} = \eta \,|\, \mathcal{R}_{r-1} = \xi, \nu^{(r)} = k) = \sum_{\substack{i_{1}, \dots, i_{a} = 1 \\ \text{all distinct}}}^{N} \frac{(k_{i_{1}})_{b_{1}} \cdots (k_{i_{a}})_{b_{a}}}{(N)_{b}}.$$

Note that i_1, \ldots, i_a are the numbers of the existing colors. \Rightarrow

$$P(\mathcal{R}_{r} = \eta \,|\, \mathcal{R}_{r-1} = \xi) = \sum_{k} P(\nu^{(r)} = k) \sum_{\substack{i_{1}, \dots, i_{a} = 1 \\ \text{all distinct}}}^{N} \frac{(k_{i_{1}})_{b_{1}} \cdots (k_{i_{a}})_{b_{a}}}{(N)_{b}}$$
$$= \frac{1}{(N)_{b}} \sum_{\substack{i_{1}, \dots, i_{a} = 1 \\ \text{all distinct}}}^{N} E((\nu_{i_{1}})_{b_{1}} \cdots (\nu_{i_{a}})_{b_{a}}) = \frac{(N)_{a}}{(N)_{b}} E((\nu_{1})_{b_{1}} \cdots (\nu_{a})_{b_{a}}),$$

since ν_1, \ldots, ν_N are exchangeable. In particular, this probability does not depend on r and n. The calculation does not change if $\{\mathcal{R}_{r-1} = \xi\}$ is replaced by $\{\mathcal{R}_{r-1} = \xi, \mathcal{R}_{r-2} = \xi_{r-2}, \ldots, \mathcal{R}_1 = \xi_1\}$. $\Rightarrow \mathcal{R}$ is a HMC.

5.3 Example
WFM:
$$p_{\xi\eta} = \frac{(N)_a}{N^b}$$
 for $\xi \subseteq \eta$, $p_{\xi\eta} = 0$ otherwise.

Proof. $(X_1, \ldots, X_N) \stackrel{d}{=} \operatorname{Mn}(N, p_1, \ldots, p_N)$ has joint factorial moments $\operatorname{E}((X_1)_{b_1} \cdots (X_a)_{b_a}) = (N)_b p_1^{b_1} \cdots p_a^{b_a}$ (exercise). Since $p_1 = \cdots = p_N = 1/N$ the result follows from Theorem 5.2.

$$\underline{MM:} \left[p_{\xi\eta} = \frac{2}{N(N-1)} \right] \text{ for } \xi \subseteq \eta \text{ with } |\xi| = |\eta| + 1,$$
$$p_{\xi\xi} = 1 - \frac{b(b-1)}{N(N-1)}, \ p_{\xi\eta} = 0 \text{ otherwise.}$$

Proof. For $\xi \subseteq \eta$ with b = a + 1 and, hence, $b_1 = 2, b_2 = \cdots = b_a = 1$ (the b_i 's w.l.o.g. ordered by size) by Theorem 5.2

$$p_{\xi\eta} = \frac{(N)_a}{(N)_b} \mathcal{E}((\nu_1)_2 \nu_2 \cdots \nu_a) = \frac{(N)_a}{(N)_b} 2P(\nu_1 = 2, \nu_2 = \cdots = \nu_a = 1)$$
$$= \frac{(N)_a}{(N)_b} 2\frac{N-a}{N(N-1)} = \frac{2}{N(N-1)}.$$

In the MM only two classes coalesce and the assertion follows.

5.4 Def. (Transition Functions)

For $a, b_1, \ldots, b_a \in \mathbb{N}$ with $b := b_1 + \cdots + b_a \leq N$ define

$$\Phi_a(b_1,\ldots,b_a) := \left| \frac{(N)_a}{(N)_b} \mathbf{E}((\nu_1)_{b_1}\cdots(\nu_a)_{b_a}) \right|.$$

5 DISCRETE COALESCENT

By Theorem 5.2, the transition matrix of \mathcal{R} is uniquely determined by Φ_1, \ldots, Φ_n . We call Φ_1, \ldots, Φ_n the <u>transition functions</u> of \mathcal{R} .

5.5 Lemma (Consistence of the Transition Functions) For $a, b_1, \ldots, b_a \in \mathbb{N}$ with $b := b_1 + \cdots + b_a < N$,

$$\Phi_{a+1}(b_1,\ldots,b_a,1) = \Phi_a(b_1,\ldots,b_a) - \sum_{i=1}^a \Phi_a(b_1,\ldots,b_{i-1},b_i+1,b_{i+1},\ldots,b_a)$$

Proof.

Exchangeability of ν_1, \ldots, ν_N and $\nu_1 + \cdots + \nu_N = N$. \Rightarrow

$$(N-a) \mathbb{E} ((\nu_1)_{b_1} \cdots (\nu_a)_{b_a} \nu_{a+1})$$

= $\mathbb{E} ((\nu_1)_{b_1} \cdots (\nu_a)_{b_a} (\nu_{a+1} + \dots + \nu_N))$
= $\mathbb{E} ((\nu_1)_{b_1} \cdots (\nu_a)_{b_a} (N - \nu_1 - \dots - \nu_a))$
= $\mathbb{E} ((\nu_1)_{b_1} \cdots (\nu_a)_{b_a} (N - b - (\nu_1 - b_1) - \dots - (\nu_a - b_a)))$
= $(N-b) \mathbb{E} ((\nu_1)_{b_1} \cdots (\nu_a)_{b_a}) - \sum_{i=1}^{a} \mathbb{E} ((\nu_1)_{b_1} \cdots (\nu_i)_{b_i+1} \cdots (\nu_a)_{b_a}).$

The assertion follows by multiplying both sides with $(N)_a/(N)_{b+1}$.

5.6 Def. (Restriction)

For $m, n \in \mathbb{N}$ with $m \leq n$ let $\rho_{nm} : \mathcal{E}_n \to \mathcal{E}_m$ denote the natural <u>restriction</u> defined via $\rho_{nm}(\xi) := \{(i, j) \in \xi \mid 1 \leq i, j \leq m\} \forall \xi \in \mathcal{E}_n$.

5.7 Theorem (Natural Coupling)

Let $(\mathcal{R}_r)_{r\in\mathbb{N}_0}$ be a *n*-coalescent with transition functions Φ_1, \ldots, Φ_n and let $m \in [n]$. Then the process $(\varrho_{nm} \circ \mathcal{R}_r)_{r\in\mathbb{N}_0}$ is a *m*-coalescent with transition functions Φ_1, \ldots, Φ_m .

Proof.

 $\varrho_{nm} = \varrho_{m+1,m} \circ \cdots \circ \varrho_{n,n-1} \Rightarrow W.l.o.g. \ m = n-1.$ Define $f := \varrho_{n,n-1}$. Let us verify that, for $\xi \in \mathcal{E}_n$ and $\tilde{\eta} \in \mathcal{E}_m$,

$$P(f \circ \mathcal{R}_r = \tilde{\eta} | \mathcal{R}_{r-1} = \xi) = \sum_{\eta \in f^{-1}(\tilde{\eta})} p_{\xi\eta} \qquad (+)$$

only depends via $\tilde{\xi} := f(\xi)$ on ξ . If $\tilde{\xi} \not\subseteq \tilde{\eta}$, then $\xi \not\subseteq \eta$, i.e. $p_{\xi\eta} = 0$ for all $\eta \in f^{-1}(\tilde{\eta})$ and (+) is 0. Assume now that $\tilde{\xi} \subseteq \tilde{\eta}$. Let C_1, \ldots, C_a denote the classes of $\tilde{\eta}$ and $C_{\alpha\beta}$, $\alpha \in \{1, \ldots, a\}$, $\beta \in \{1, \ldots, b_\alpha\}$, the classes of $\tilde{\xi}$ such that $C_{\alpha} = \bigcup_{\beta=1}^{b_{\alpha}} C_{\alpha\beta}$. Let $\eta_0 \in \mathcal{E}_n$ be the equivalence relation with classes

5 DISCRETE COALESCENT

 $C_1, \ldots, C_a, \{n\}$, and for $i \in \{1, \ldots, a\}$ let $\eta_i \in \mathcal{E}_n$ be the equivalence relation with classes $C_1, \ldots, C_{i-1}, C_i \cup \{n\}, C_{i+1}, \ldots, C_a$.

Assume first that $\{n\}$ is not a class of ξ . Then there exists $i \in \{1, \ldots, a\}$ and $j \in \{1, \ldots, b_i\}$ such that $C_{ij} \cup \{n\}$ is a class of ξ . The relation $\eta = \eta_i$ is then the only one satisfying the conditions $\xi \subseteq \eta$ and $f(\eta) = \tilde{\eta}$. Hence, (+) is in this case equal to $p_{\xi\eta_i} = \Phi_a(b_1, \ldots, b_a)$.

Assume now that $\{n\}$ is a class of ξ . Then, exactly the relations $\eta \in \{\eta_0, \ldots, \eta_a\}$ satisfy the conditions $\xi \subseteq \eta$ and $f(\eta) = \tilde{\eta}$.

$$\sum_{\eta \in f^{-1}(\tilde{\eta})} p_{\xi\eta} = \sum_{i=0}^{a} p_{\xi\eta_i}$$

= $\Phi_{a+1}(b_1, \dots, b_a, 1) + \sum_{i=1}^{a} \Phi_a(b_1, \dots, b_{i-1}, b_i + 1, b_{i+1}, \dots, b_a)$
= $\Phi_a(b_1, \dots, b_a),$

by Lemma 5.5. \Rightarrow (+) only depends via $\tilde{\xi}$ on ξ . We have

$$\{f \circ \mathcal{R}_{r-1} = \tilde{\xi}\} = \bigcup_{\xi \in f^{-1}(\tilde{\xi})} \{\mathcal{R}_{r-1} = \xi\}.$$

Thus, by Exercise 2.1.4, the transition probabilities $p_{\tilde{\xi}\tilde{\eta}} := P(f \circ \mathcal{R}_r = \tilde{\eta} | f \circ \mathcal{R}_{r-1} = \tilde{\xi})$ are equal to 0 for $\tilde{\xi} \not\subseteq \tilde{\eta}$ and for $\tilde{\xi} \subseteq \tilde{\eta}$ equal to

$$p_{\tilde{\xi}\tilde{\eta}} = \Phi_a(b_1,\ldots,b_a).$$

 \mathcal{R} is a MC. \Rightarrow The calculation does not change if $\{f \circ \mathcal{R}_{r-1} = \tilde{\xi}\}$ is replaced by $\{f \circ \mathcal{R}_{r-1} = \tilde{\xi}, f \circ \mathcal{R}_{r-2} = \tilde{\xi}_{r-2}, \dots, f \circ \mathcal{R}_0 = \tilde{\xi}_0\}$. $\Rightarrow (f \circ \mathcal{R}_r)_{r \in \mathbb{N}_0}$ is a HMC.

5.8 Lemma (Monotonicity of the Transition Functions)

For $1 \leq l \leq j \leq N$ and $k_1, \ldots, k_j, m_1, \ldots, m_l \in \mathbb{N}$ with $k_1 \geq m_1, \ldots, k_l \geq m_l$ and $k_1 + \cdots + k_j \leq N$,

$$\Phi_j(k_1,\ldots,k_j) \leq \Phi_l(m_1,\ldots,m_l), \quad (*)$$

i.e. as more classes coalesce, as less likely this is. In particular, $\Phi_j(k_1, \ldots, k_j) \leq \Phi_1(1) = \mathcal{E}(\nu_1) = 1$.

Proof.

Inductively on the difference $d := j - l \in \{0, ..., N - 1\}$. Lemma 5.5. $\Rightarrow \Phi_l(m_1, ..., m_l) \ge \Phi_l(m_1, ..., m_{i-1}, m_i + 1, m_{i+1}, ..., m_l)$ for $i \in \{1, ..., l\}$.

Iteratively, (*) follows for j = l, i.e. for d = 0. Again by Lemma 5.5 and (*) for d = 0,

$$\Phi_l(m_1,\ldots,m_l) \stackrel{\text{Lem. 5.5}}{\geq} \Phi_{l+1}(m_1,\ldots,m_l,1) \stackrel{(*) \text{ for } d=0}{\geq} \Phi_{l+1}(k_1,\ldots,k_{l+1}).$$

Thus, (*) holds for j = l + 1, i.e. for d = 1. Applying (*) for d = 1 exactly (j - l)-times yields

$$\begin{aligned} \Phi_{l}(m_{1}, \dots, m_{l}) &\geq & \Phi_{l+1}(k_{1}, \dots, k_{l+1}) \\ &\geq & \Phi_{l+2}(k_{1}, \dots, k_{l+2}) \\ &\geq & \dots &\geq & \Phi_{j-1}(k_{1}, \dots, k_{j-1}) &\geq & \Phi_{j}(k_{1}, \dots, k_{j}). \end{aligned}$$

5.9 Def. (Coalescence Probability)

Let c_N denote the probability that two individuals, randomly sampled from some gen., have a common ancestor one gen. backwards, i.e.

$$c_N := \Phi_1(2) = \frac{N}{(N)_2} E((\nu_1)_2) = \frac{Var(\nu_1)}{N-1}$$

 c_N is called the <u>coalescence</u> probability

5.10 Example
WFM:
$$c_N = \frac{1}{N}$$
. MM: $c_N = \frac{2}{N(N-1)}$.

5.11 Example (<u>Time to MRCA</u>)

Consider 2 individuals of gen. 0. Let T_N denote the number of gen. which one has to go back to the past until you find the (most recent) common ancestor (MRCA) of these two individuals.

 $\Rightarrow P(T_N = k) = c_N(1 - c_N)^{k-1}, k \in \mathbb{N}, i.e. T_N - 1 \stackrel{d}{=} G(c_N)$ (geometric distribution).

$$\Rightarrow E(T_N) = \frac{1}{c_N}, Var(T_N) = \frac{1 - c_N}{c_N^2} = \frac{1}{c_N} \left(\frac{1}{c_N} - 1\right).$$

WFM: $E(T_N) = N, Var(T_N) = N(N - 1).$
MM: $E(T_N) = \frac{N^2 - N}{2} \sim \frac{N^2}{2}, Var(T_N) = \frac{N^2 - N}{2} \left(\frac{N^2 - N}{2} - 1\right) \sim \frac{N^4}{4}.$

Rem.

 $N_e := 1/c_N = E(T_N)$ is called the <u>effective population size</u>. Example 5.11 indicates that N_e is a measure for the speed of the evolution. Under mild conditions, the time-scaled ancestral process $(\mathcal{R}_{[t/c_N]}^{(N,n)})_{t\geq 0}$ converges in distribution as $N \to \infty$ to a continuous-time limiting process $(R_t^{(n)})_{t\geq 0}$, which

5 DISCRETE COALESCENT

is called an *n*-coalescent. The most prominent such limiting process is the <u>Kingman *n*-coalescent</u> (Kingman, 1982), allowing only for binary mergers of ancestral lineages. In general, these limiting processes allow for multiple collisions (<u> Λ -coalescent</u>) or even simultaneous multiple collisions (<u> Ξ -coalescent</u>) of ancestral lineages (Pitman 1999, Sagitov 1999, Schweinsberg 2000, M. and Sagitov 2001).