## 5 Discrete coalescent

Given: Cannings model with constant population size $N$ as in Section 3.
The gen. are now labeled backwards in time, i.e. $r=0$ is the (current) gen. of the offspring, $r=1$ the gen. of the parents, $r=2$ the gen. of the grandparents and so on. Sample $n(\leq N)$ individuals from gen. 0 and consider their ancestors.

### 5.1 Def.

For $r \in \mathbb{N}_{0}$ define a random relation $\mathcal{R}_{r}$ on $[n]:=\{1, \ldots, n\}$ via

$$
(i, j) \in \mathcal{R}_{r}: \Longleftrightarrow \quad \begin{aligned}
& \text { The individuals } i \text { and } j \text { have a common ancestor } \\
& \text { in gen. } r \text {, i.e. } r \text { gen. backwards in the past. }
\end{aligned}
$$

Clearly, $\mathcal{R}_{r}$ is a random equivalence relation on [n], i.e. $\mathcal{R}_{r}$ is a r.v. taking values in $\mathcal{E}_{n}$, the (finite) set of equivalence relations on $[n]$. Note that $\mathcal{R}_{r}=$ $\mathcal{R}_{r}^{(N, n)}$ depends on $N$ and $n$.

### 5.2 Theorem and Def. (Discrete Coalescent)

$\mathcal{R}:=\left(\mathcal{R}_{r}\right)_{r \in \mathbb{N}_{0}}$ is a HMC with state space $\mathcal{E}_{n}$ and initial state $\mathcal{R}_{0} \equiv \Delta_{n}:=$ $\{(i, i) \mid 1 \leq i \leq n\}$ (diagonal relation). The transition probabilities $p_{\xi \eta}:=$ $P\left(\mathcal{R}_{r}=\eta \mid \mathcal{R}_{r-1}=\xi\right), \xi, \eta \in \mathcal{E}_{n}$, are $p_{\xi \eta}=0$ for $\xi \nsubseteq \eta$ and

$$
p_{\xi \eta}=\frac{(N)_{a}}{(N)_{b}} \mathrm{E}\left(\left(\nu_{1}\right)_{b_{1}} \cdots\left(\nu_{a}\right)_{b_{a}}\right) \quad \text { for } \xi \subseteq \eta,
$$

where $(x)_{0}:=1$ and $(x)_{k}:=x(x-1) \cdots(x-k+1), k \in \mathbb{N}$. Here $a=|\eta|$ and $b=|\xi|$ are the number of (equivalence) classes of $\eta$ and $\xi$ respectively, and $b_{1}, \ldots, b_{a}$ are the group sizes of merging classes of $\xi\left(\Rightarrow b_{1}+\cdots+b_{a}=b\right)$.
$\mathcal{R}$ is called (discrete) n-coalescent.
(Latin: coalescere $=$ to coalesce, to union)

## Proof.

Clearly, $\mathcal{R}_{0}=\Delta_{n}$ and $p_{\xi \eta}=0$ for $\xi \nsubseteq \eta$. Assume now that $\xi \subseteq \eta . \mathcal{R}_{r-1}, \nu^{(r)}$ independent. $\Rightarrow$

$$
P\left(\mathcal{R}_{r}=\eta \mid \mathcal{R}_{r-1}=\xi\right)=\sum_{k} P\left(\mathcal{R}_{r}=\eta \mid \mathcal{R}_{r-1}=\xi, \nu^{(r)}=k\right) P\left(\nu^{(r)}=k\right),
$$

where the sum extends over all $k=\left(k_{1}, \ldots, k_{N}\right)$ with $P\left(\nu^{(r)}=k\right)>0$. In order to calculate $P\left(\mathcal{R}_{r}=\eta \mid \mathcal{R}_{r-1}=\xi, \nu^{(r)}=k\right)$ consider the following experiment: Assume that $N$ colors are given. A box contains $N$ balls (the children), more precisely, $k_{i}$ balls of color $i, i \in[N]$. Sample $b$ balls without
replacement. The probability that among the $b$ drawn balls there are exactly $b_{j}$ balls of the same color, $j \in\{1, \ldots, a\}$, is

$$
P\left(\mathcal{R}_{r}=\eta \mid \mathcal{R}_{r-1}=\xi, \nu^{(r)}=k\right)=\sum_{\substack{i_{1}, \ldots, i_{a}=1 \\ \text { alld distinct }}}^{N} \frac{\left(k_{i_{1}}\right)_{b_{1}} \cdots\left(k_{i_{a}}\right)_{b_{a}}}{(N)_{b}} .
$$

Note that $i_{1}, \ldots, i_{a}$ are the numbers of the existing colors. $\Rightarrow$

$$
\begin{aligned}
& P\left(\mathcal{R}_{r}=\eta \mid \mathcal{R}_{r-1}=\xi\right)=\sum_{k} P\left(\nu^{(r)}=k\right) \sum_{\substack{i_{1}, \ldots, i_{a}=1 \\
\text { all distinct }}}^{N} \frac{\left(k_{i_{1}}\right)_{b_{1}} \cdots\left(k_{i_{a}}\right)_{b_{a}}}{(N)_{b}} \\
& \quad=\frac{1}{(N)_{b}} \sum_{\substack{i_{1}, \ldots, i_{a}=1 \\
\text { alldistinct }}}^{N} \mathrm{E}\left(\left(\nu_{i_{1}}\right)_{b_{1}} \cdots\left(\nu_{i_{a}}\right)_{b_{a}}\right)=\frac{(N)_{a}}{(N)_{b}} \mathrm{E}\left(\left(\nu_{1}\right)_{b_{1}} \cdots\left(\nu_{a}\right)_{b_{a}}\right),
\end{aligned}
$$

since $\nu_{1}, \ldots, \nu_{N}$ are exchangeable. In particular, this probability does not depend on $r$ and $n$. The calculation does not change if $\left\{\mathcal{R}_{r-1}=\xi\right\}$ is replaced by $\left\{\mathcal{R}_{r-1}=\xi, \mathcal{R}_{r-2}=\xi_{r-2}, \ldots, \mathcal{R}_{1}=\xi_{1}\right\} . \Rightarrow \mathcal{R}$ is a HMC.

## $\begin{aligned} & \text { 5.3 Example } \\ & \text { WFM: }\end{aligned} p_{\xi \eta}=\frac{(N)_{a}}{N^{b}}$ for $\xi \subseteq \eta, p_{\xi \eta}=0$ otherwise.

Proof. $\left(X_{1}, \ldots, X_{N}\right) \stackrel{d}{=} \operatorname{Mn}\left(N, p_{1}, \ldots, p_{N}\right)$ has joint factorial moments $\mathrm{E}\left(\left(X_{1}\right)_{b_{1}} \cdots\left(X_{a}\right)_{b_{a}}\right)=(N)_{b} p_{1}^{b_{1}} \cdots p_{a}^{b_{a}}$ (exercise). Since $p_{1}=\cdots=p_{N}=1 / N$ the result follows from Theorem 5.2.
MM: $p_{\xi \eta}=\frac{2}{N(N-1)}$ for $\xi \subseteq \eta$ with $|\xi|=|\eta|+1$,
$p_{\xi \xi}=1-\frac{b(b-1)}{N(N-1)}, p_{\xi \eta}=0$ otherwise.
Proof. For $\xi \subseteq \eta$ with $b=a+1$ and, hence, $b_{1}=2, b_{2}=\cdots=b_{a}=1$ (the $b_{i}$ 's w.l.o.g. ordered by size) by Theorem 5.2

$$
\begin{aligned}
p_{\xi \eta} & =\frac{(N)_{a}}{(N)_{b}} \mathrm{E}\left(\left(\nu_{1}\right)_{2} \nu_{2} \cdots \nu_{a}\right)=\frac{(N)_{a}}{(N)_{b}} 2 P\left(\nu_{1}=2, \nu_{2}=\cdots=\nu_{a}=1\right) \\
& =\frac{(N)_{a}}{(N)_{b}} 2 \frac{N-a}{N(N-1)}=\frac{2}{N(N-1)} .
\end{aligned}
$$

In the MM only two classes coalesce and the assertion follows.

### 5.4 Def. (Transition Functions)

For $a, b_{1}, \ldots, b_{a} \in \mathbb{N}$ with $b:=b_{1}+\cdots+b_{a} \leq N$ define

$$
\Phi_{a}\left(b_{1}, \ldots, b_{a}\right):=\frac{(N)_{a}}{(N)_{b}} \mathrm{E}\left(\left(\nu_{1}\right)_{b_{1}} \cdots\left(\nu_{a}\right)_{b_{a}}\right) .
$$

By Theorem 5.2, the transition matrix of $\mathcal{R}$ is uniquely determined by $\Phi_{1}, \ldots, \Phi_{n}$. We call $\Phi_{1}, \ldots, \Phi_{n}$ the transition functions of $\mathcal{R}$.

### 5.5 Lemma (Consistence of the Transition Functions)

For $a, b_{1}, \ldots, b_{a} \in \mathbb{N}$ with $b:=b_{1}+\cdots+b_{a}<N$,

$$
\Phi_{a+1}\left(b_{1}, \ldots, b_{a}, 1\right)=\Phi_{a}\left(b_{1}, \ldots, b_{a}\right)-\sum_{i=1}^{a} \Phi_{a}\left(b_{1}, \ldots, b_{i-1}, b_{i}+1, b_{i+1}, \ldots, b_{a}\right)
$$

## Proof.

Exchangeability of $\nu_{1}, \ldots, \nu_{N}$ and $\nu_{1}+\cdots+\nu_{N}=N . \Rightarrow$

$$
\begin{aligned}
& (N-a) \mathrm{E}\left(\left(\nu_{1}\right)_{b_{1}} \cdots\left(\nu_{a}\right)_{b_{a}} \nu_{a+1}\right) \\
& \quad=\mathrm{E}\left(\left(\nu_{1}\right)_{b_{1}} \cdots\left(\nu_{a}\right)_{b_{a}}\left(\nu_{a+1}+\cdots+\nu_{N}\right)\right) \\
& =\mathrm{E}\left(\left(\nu_{1}\right)_{b_{1}} \cdots\left(\nu_{a}\right)_{b_{a}}\left(N-\nu_{1}-\cdots-\nu_{a}\right)\right) \\
& =\mathrm{E}\left(\left(\nu_{1}\right)_{b_{1}} \cdots\left(\nu_{a}\right)_{b_{a}}\left(N-b-\left(\nu_{1}-b_{1}\right)-\cdots-\left(\nu_{a}-b_{a}\right)\right)\right) \\
& =(N-b) \mathrm{E}\left(\left(\nu_{1}\right)_{b_{1}} \cdots\left(\nu_{a}\right)_{b_{a}}\right)-\sum_{i=1}^{a} \mathrm{E}\left(\left(\nu_{1}\right)_{b_{1}} \cdots\left(\nu_{i}\right)_{b_{i}+1} \cdots\left(\nu_{a}\right)_{b_{a}}\right) .
\end{aligned}
$$

The assertion follows by multiplying both sides with $(N)_{a} /(N)_{b+1}$.

### 5.6 Def. (Restriction)

For $m, n \in \mathbb{N}$ with $m \leq n$ let $\varrho_{n m}: \mathcal{E}_{n} \rightarrow \mathcal{E}_{m}$ denote the natural restriction defined via $\varrho_{n m}(\xi):=\{(i, j) \in \xi \mid 1 \leq i, j \leq m\} \forall \xi \in \mathcal{E}_{n}$.

### 5.7 Theorem (Natural Coupling)

Let $\left(\mathcal{R}_{r}\right)_{r \in \mathbb{N}_{0}}$ be a $n$-coalescent with transition functions $\Phi_{1}, \ldots, \Phi_{n}$ and let $m \in[n]$. Then the process $\left(\varrho_{n m} \circ \mathcal{R}_{r}\right)_{r \in \mathbb{N}_{0}}$ is a $m$-coalescent with transition functions $\Phi_{1}, \ldots, \Phi_{m}$.

## Proof.

$\varrho_{n m}=\varrho_{m+1, m} \circ \cdots \circ \varrho_{n, n-1} . \Rightarrow$ W.l.o.g. $m=n-1$. Define $f:=\varrho_{n, n-1}$. Let us verify that, for $\xi \in \mathcal{E}_{n}$ and $\tilde{\eta} \in \mathcal{E}_{m}$,

$$
P\left(f \circ \mathcal{R}_{r}=\tilde{\eta} \mid \mathcal{R}_{r-1}=\xi\right)=\sum_{\eta \in f^{-1}(\tilde{\eta})} p_{\xi \eta} \quad(+)
$$

only depends via $\tilde{\xi}:=f(\xi)$ on $\xi$. If $\tilde{\xi} \nsubseteq \tilde{\eta}$, then $\xi \nsubseteq \eta$, i.e. $p_{\xi \eta}=0$ for all $\eta \in f^{-1}(\tilde{\eta})$ and $(+)$ is 0 . Assume now that $\tilde{\xi} \subseteq \tilde{\eta}$. Let $C_{1}, \ldots, C_{a}$ denote the classes of $\tilde{\eta}$ and $C_{\alpha \beta}, \alpha \in\{1, \ldots, a\}, \beta \in\left\{1, \ldots, b_{\alpha}\right\}$, the classes of $\tilde{\xi}$ such that $C_{\alpha}=\bigcup_{\beta=1}^{b_{\alpha}} C_{\alpha \beta}$. Let $\eta_{0} \in \mathcal{E}_{n}$ be the equivalence relation with classes
$C_{1}, \ldots, C_{a},\{n\}$, and for $i \in\{1, \ldots, a\}$ let $\eta_{i} \in \mathcal{E}_{n}$ be the equivalence relation with classes $C_{1}, \ldots, C_{i-1}, C_{i} \cup\{n\}, C_{i+1}, \ldots, C_{a}$.
Assume first that $\{n\}$ is not a class of $\xi$. Then there exists $i \in\{1, \ldots, a\}$ and $j \in\left\{1, \ldots, b_{i}\right\}$ such that $C_{i j} \cup\{n\}$ is a class of $\xi$. The relation $\eta=\eta_{i}$ is then the only one satisfying the conditions $\xi \subseteq \eta$ and $f(\eta)=\tilde{\eta}$. Hence, $(+)$ is in this case equal to $p_{\xi \eta_{i}}=\Phi_{a}\left(b_{1}, \ldots, b_{a}\right)$.
Assume now that $\{n\}$ is a class of $\xi$. Then, exactly the relations $\eta \in$ $\left\{\eta_{0}, \ldots, \eta_{a}\right\}$ satisfy the conditions $\xi \subseteq \eta$ and $f(\eta)=\tilde{\eta} . \Rightarrow$

$$
\begin{aligned}
\sum_{\eta \in f^{-1}(\tilde{\eta})} p_{\xi \eta} & =\sum_{i=0}^{a} p_{\xi \eta_{i}} \\
& =\Phi_{a+1}\left(b_{1}, \ldots, b_{a}, 1\right)+\sum_{i=1}^{a} \Phi_{a}\left(b_{1}, \ldots, b_{i-1}, b_{i}+1, b_{i+1}, \ldots, b_{a}\right) \\
& =\Phi_{a}\left(b_{1}, \ldots, b_{a}\right)
\end{aligned}
$$

by Lemma $5.5 . \Rightarrow(+)$ only depends via $\tilde{\xi}$ on $\xi$. We have

$$
\left\{f \circ \mathcal{R}_{r-1}=\tilde{\xi}\right\}=\bigcup_{\xi \in f^{-1}(\tilde{\xi})}\left\{\mathcal{R}_{r-1}=\xi\right\} .
$$

Thus, by Exercise 2.1.4, the transition probabilities $p_{\tilde{\tilde{\xi}} \tilde{\eta}}:=P\left(f \circ \mathcal{R}_{r}=\tilde{\eta} \mid f \circ\right.$ $\mathcal{R}_{r-1}=\tilde{\xi}$ ) are equal to 0 for $\tilde{\xi} \nsubseteq \tilde{\eta}$ and for $\tilde{\xi} \subseteq \tilde{\eta}$ equal to

$$
p_{\tilde{\xi} \tilde{\eta}}=\Phi_{a}\left(b_{1}, \ldots, b_{a}\right) .
$$

$\mathcal{R}$ is a MC. $\Rightarrow$ The calculation does not change if $\left\{\underset{\tilde{\xi}}{\sim} \circ \mathcal{R}_{r-1}=\tilde{\xi}\right\}$ is replaced by $\left\{f \circ \mathcal{R}_{r-1}=\tilde{\xi}, f \circ \mathcal{R}_{r-2}=\tilde{\xi}_{r-2}, \ldots, f \circ \mathcal{R}_{0}=\tilde{\xi}_{0}\right\} . \Rightarrow\left(f \circ \mathcal{R}_{r}\right)_{r \in \mathbb{N}_{0}}$ is a HMC.

### 5.8 Lemma (Monotonicity of the Transition Functions)

For $1 \leq l \leq j \leq N$ and $k_{1}, \ldots, k_{j}, m_{1}, \ldots, m_{l} \in \mathbb{N}$ with $k_{1} \geq m_{1}, \ldots, k_{l} \geq m_{l}$ and $k_{1}+\cdots+k_{j} \leq N$,

$$
\begin{equation*}
\Phi_{j}\left(k_{1}, \ldots, k_{j}\right) \leq \Phi_{l}\left(m_{1}, \ldots, m_{l}\right) \tag{*}
\end{equation*}
$$

i.e. as more classes coalesce, as less likely this is.

In particular, $\Phi_{j}\left(k_{1}, \ldots, k_{j}\right) \leq \Phi_{1}(1)=\mathrm{E}\left(\nu_{1}\right)=1$.

## Proof.

Inductively on the difference $d:=j-l \in\{0, \ldots, N-1\}$. Lemma 5.5. $\Rightarrow$ $\Phi_{l}\left(m_{1}, \ldots, m_{l}\right) \geq \Phi_{l}\left(m_{1}, \ldots, m_{i-1}, m_{i}+1, m_{i+1}, \ldots, m_{l}\right)$ for $i \in\{1, \ldots, l\}$.

Iteratively, $(*)$ follows for $j=l$, i.e. for $d=0$. Again by Lemma 5.5 and ( $*$ ) for $d=0$,

$$
\Phi_{l}\left(m_{1}, \ldots, m_{l}\right) \stackrel{\text { Lem. }}{\geq}{ }^{5.5} \Phi_{l+1}\left(m_{1}, \ldots, m_{l}, 1\right) \stackrel{(*) \text { for } d=0}{\geq} \Phi_{l+1}\left(k_{1}, \ldots, k_{l+1}\right)
$$

Thus, $(*)$ holds for $j=l+1$, i.e. for $d=1$. Applying $(*)$ for $d=1$ exactly $(j-l)$-times yields

$$
\begin{aligned}
\Phi_{l}\left(m_{1}, \ldots, m_{l}\right) & \geq \Phi_{l+1}\left(k_{1}, \ldots, k_{l+1}\right) \\
& \geq \Phi_{l+2}\left(k_{1}, \ldots, k_{l+2}\right) \\
& \geq \cdots \geq \Phi_{j-1}\left(k_{1}, \ldots, k_{j-1}\right) \geq \Phi_{j}\left(k_{1}, \ldots, k_{j}\right) .
\end{aligned}
$$

### 5.9 Def. (Coalescence Probability)

Let $c_{N}$ denote the probability that two individuals, randomly sampled from some gen., have a common ancestor one gen. backwards, i.e.

$$
c_{N}:=\Phi_{1}(2)=\frac{N}{(N)_{2}} \mathrm{E}\left(\left(\nu_{1}\right)_{2}\right)=\frac{\operatorname{Var}\left(\nu_{1}\right)}{N-1} .
$$

$c_{N}$ is called the coalescence probability
5.10 Example
WFM: $c_{N}=\frac{1}{N}$. MM: $c_{N}=\frac{2}{N(N-1)}$.

### 5.11 Example (Time to MRCA)

Consider 2 individuals of gen. 0. Let $T_{N}$ denote the number of gen. which one has to go back to the past until you find the (most recent) common ancestor (MRCA) of these two individuals.
$\Rightarrow P\left(T_{N}=k\right)=c_{N}\left(1-c_{N}\right)^{k-1}, k \in \mathbb{N}$, i.e. $T_{N}-1 \stackrel{d}{=} G\left(c_{N}\right)$ (geometric distribution).
$\Rightarrow \mathrm{E}\left(T_{N}\right)=\frac{1}{c_{N}}, \operatorname{Var}\left(T_{N}\right)=\frac{1-c_{N}}{c_{N}^{2}}=\frac{1}{c_{N}}\left(\frac{1}{c_{N}}-1\right)$.
WFM: $\mathrm{E}\left(T_{N}\right)=N, \operatorname{Var}\left(T_{N}\right)=N(N-1)$.
$\underline{M M}: \mathrm{E}\left(T_{N}\right)=\frac{N^{2}-N}{2} \sim \frac{N^{2}}{2}, \operatorname{Var}\left(T_{N}\right)=\frac{N^{2}-N}{2}\left(\frac{N^{2}-N}{2}-1\right) \sim \frac{N^{4}}{4}$.

## Rem.

$N_{e}:=1 / c_{N}=\mathrm{E}\left(T_{N}\right)$ is called the effective population size. Example 5.11 indicates that $N_{e}$ is a measure for the speed of the evolution. Under mild conditions, the time-scaled ancestral process $\left(\mathcal{R}_{\left[t / c_{N}\right]}^{(N, n)}\right)_{t \geq 0}$ converges in distribution as $N \rightarrow \infty$ to a continuous-time limiting process $\left(R_{t}^{(n)}\right)_{t \geq 0}$, which
is called an $n$-coalescent. The most prominent such limiting process is the Kingman $n$-coalescent (Kingman, 1982), allowing only for binary mergers of ancestral lineages. In general, these limiting processes allow for multiple collisions ( $\underline{\Lambda}$-coalescent) or even simultaneous multiple collisions ( $\Xi$-coalescent) of ancestral lineages (Pitman 1999, Sagitov 1999, Schweinsberg 2000, M. and Sagitov 2001).

