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5 Discrete coalescent

Given: Cannings model with constant population size N as in Section 3.

The gen. are now labeled backwards in time, i.e. 7 = 0 is the (current)
gen. of the offspring, » = 1 the gen. of the parents, r = 2 the gen. of the
grandparents and so on. Sample n (< N) individuals from gen. 0 and consider
their ancestors.

5.1 Def.
For r € Ny define a random relation R, on [n| := {1,...,n} via

(ij) € Ry - The individuals i and j have a common ancestor
J " in gen. r, i.e. v gen. backwards in the past.

Clearly, R, is a random equivalence relation on [n], i.e. R, is a r.v. taking
values in &,, the (finite) set of equivalence relations on [n|. Note that R, =

RN depends on N and n.

5.2 Theorem and Def. (Discrete Coalescent)

R = (R,)ren, is a HMC with state space &, and initial state Ry = A,, :=
{(,9)|1 < i < n} (diagonal relation). The transition probabilities pg, =
PR, =n|R,-1=¢),&,n €&, are pey =0 for £  n and

Pen = ( )bE<(V1)b1 T (l/a)ba) fOl"g Cn,

where () :=1 and (z);, = x(x —1)---(x —k+1), k € N. Here a = |n| and
b = |¢| are the number of (equivalence) classes of n and £ respectively, and
bi,...,b, are the group sizes of merging classes of & (= by + -+ b, =b).
R is called (discrete) n-coalescent.

(Latin: coalescere = to coalesce, to union)

Proof.
Clearly, Ry = A, and pg, = 0 for & € 7. Assume now that £ Cn. R,_1, v
independent. =

PR, =n|Ry—1=¢) = ZP(Rr =1n|Rr-1 :f,V(T) Zk)P(V(T) = k),
k

where the sum extends over all k = (ki,...,ky) with P(v™ = k) > 0. In
order to calculate P(R, = n|R,_1 = & v = k) consider the following
experiment: Assume that N colors are given. A box contains N balls (the
children), more precisely, k; balls of color i, i € [N]. Sample b balls without
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replacement. The probability that among the b drawn balls there are exactly
b; balls of the same color, j € {1,...,a}, is

N
PR, =n|Rp1 =600 =k) = i Jo - (K)o,
( n | 1 S ) ) ”Zl:_l (N)b
alfdi’st?nct
Note that iy,...,17, are the numbers of the existing colors. =
N
k. )b (k )b
PR, =n|R,o1=¢) = » P =k oo - (ki o
( n ‘ 1 5) ; ( ) . mzia_l (N)b
all’di7stinct
N
1 (V)a
= E((v; ), -+ (vi — \Ylep o (V)b
W 2 PO 0n) = (B e ()
all’di’stainct
since vy,...,vy are exchangeable. In particular, this probability does not
depend on r and n. The calculation does not change if {R,_; = £} is replaced
by {Rr—1 =& Rr2=&-2,...,R1 =& }. = R is a HMC. O
5.3 Example (N)
WEM: Pey = Tba for € C 0, pep, = 0 otherwise.
Proof. (Xi,...,Xy) 4 Mn(N,p1,...,pn) has joint factorial moments
E((X1)p, - (X2)p,) = (N)ppht - - -pbe (exercise). Since py = -+- = py = 1/N
the result follows from Theorem 5.2. O
2 .
MM: | pey = NN 1) for § C n with [¢] = |n] + 1,
b(b—1

Pee =1 — ﬁ, Pen = 0 otherwise.
Proof. For ¢ Cn with b= a+ 1 and, hence, by =2, by = --- = b, = 1 (the
b;’s w.l.o.g. ordered by size) by Theorem 5.2

(V)a (V)a

E cy,) = 2P =2, 1p = =1, =1
Den (N)s (()2va- - va) (V) (1 V2 v )
~ N)ay, N—a 2

(N), N(N—-1)  N(N-1)

In the MM only two classes coalesce and the assertion follows. 0

5.4 Def. (Transition Functions)
For a,by,...,b, € N withb:=b; +---+b, < N define

Doy, ... by) = g;:E((yl)bl...(,/a)ba) .
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By Theorem 5.2, the transition matrix of R is uniquely determined by
®q,...,9,. Wecall b4,...,P, the transition functions of R.

5.5 Lemma (Consistence of the Transition Functions)
For a,by,..., b, € N withb:=b;+---+b, <N,

Dor1(by, ... ba, 1) = Do(by, ..., ba §}>%m bi_1,bi + 1, biy1, ..., ba)
Proof.
Exchangeability of vq,...,vy and v +---+ vy = N. =

(N —a)E((v ) + (Va)b,Vat1)

= E((1n)y Va)ba (Vag1 + -+ vw))
= E(()n, - Wa)p (N =11 =+ — va))
= E(()n - (s (N == (12 =) = = (20 = )

= (N=0)E((n)s, - (Va)sa) ZE v )b, - (Wb (Vadb,) -

The assertion follows by multiplying both sides with (NV)./(V)pt1- O

5.6 Def. (Restriction)
For m,n € N with m < n let g,,, : €&, — &,, denote the natural restriction
defined via 0 (§) == {(i,j) € {|1 <i,7 <m} Ve,

5.7 Theorem (Natural Coupling)

Let (R;)ren, be a n-coalescent with transition functions ®1,...,®, and let
m € [n|. Then the process (0nm © R,)ren, IS & m-coalescent with transition
functions &4, ..., ®,,.

Proof.
Onm = Om41,m ©*** O Opn—1. = W.l.o.g. m = n — 1. Define f := g, ,,—1. Let
us verify that, for £ € £, and 7 € &,,,

P(foR,=ij|Recr =€) = Y poy  (+)

nef=1(7)

only depends via € = f(&) on & If € ¢ 7, then £ € n, ie. pen = 0 for all
ne f~(7) and (+) is 0. Assume now that & C 7. Let Ci, ..., C, denote the
classes of 7 and Cag, ae{l,....a}, B € {l,... by}, the classes of £ such
that C, U Cop. Let ng € 5 be the equlvalence relation with classes
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Ci,...,Cq{n}, and for i € {1,... a} let n; € &, be the equivalence relation
with classes C1,...,Ci—1,C; U{n},Cit1,...,C,.

Assume first that {n} is not a class of £. Then there exists i € {1,...,a} and
Jj €{1,...,b;} such that C;; U{n} is a class of £. The relation n = 7, is then
the only one satisfying the conditions & C n and f(n) = 7. Hence, (+) is in
this case equal to pe,, = ®o(b1, ..., b,).

Assume now that {n} is a class of . Then, exactly the relations n €
{no, . .., Ma} satisfy the conditions £ C n and f(n) =7. =

a
}: mn=:§:mm
=0

nef-t

= Buiq(by,. .., b, +§:¢ (by,. . bis1, b+ 1,bisq, ... ba)
= Du(by,...,b4),
by Lemma 5.5. = (+) only depends via & on &. We have
{foR =8 = |J {Ra=¢
€ef=1(®)
Thus, by Exercise 2.1.4, the transition probabilities pg; := P(foR,=17|fo
R,_1 = &) are equal to 0 for £ Z 7j and for £ C 7j equal to

p£~ = & (bl,...,b).

R is a MC. = The calculation does not change if { JoR,1=¢ } is replaced

by {f o R, 1—ffOR 2—@ 2,--~,f0730—§0} = (foRy)ren, is a
HMC. O

5.8 Lemma (Monotonicity of the Transition Functions)
For1<[I<j<Nandky,...,kj,my,...,my € Nwithk; >my,.... k5 >my
andk1+~~~+k;j SN,

(I)j(kl,...7kj) < @l(ml,...,mz) ) (*)

i.e. as more classes coalesce, as less likely this is.
In particular, ®;(ky,...,k;) < (1) =E(1n) = 1.

Proof.
Inductively on the difference d := j — 1 € {0,...,N — 1}. Lemma 5.5. =
(I)l<m1, Ce ,ml) 2 (I)l(ml, e, MMy, My -+ 1,mi+1, e ,ml) for ¢ € {1, R ,l}
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Iteratively, (x) follows for j =, i.e. for d = 0. Again by Lemma 5.5 and (%)
for d =0,

Lem. 5.5 (*) ford=10
@l(ml,...,ml) 2 CI)lH(ml,...,ml,l) Z @l+1(k?1,...,kl+1).

Thus, (*) holds for j =1+ 1, i.e. for d = 1. Applying (*) for d = 1 exactly
(7 — 1)-times yields

(pl(ml)"'aml) > q)l-‘rl(kl)"'vkl-i-l)
> Opa(kyy oo ko)
2 2 q)j—l(kla-"akj—l) 2 q)](kla 7k]) O

5.9 Def. (Coalescence Probability)
Let ¢y denote the probability that two individuals, randomly sampled from
some gen., have a common ancestor one gen. backwards, i.e.

N Var(vy)

ey = 01(2) = (N)ZE((Vl)Q) = N1

cn 1s called the coalescence probability

5.10 Examp]le

2
WEM: ¢y = N MM: ¢y =

NN 1)

5.11 Example (Time to MRCA)
Consider 2 individuals of gen. 0. Let T denote the number of gen. which one

has to go back to the past until you find the (most recent) common ancestor
(MRCA) of these two individuals.

= P(Ty = k) = cy(1 —cen)* L k € N, e Ty — 1 il G(cn) (geometric
distribution).

= B(Ty) = —, Var(Ty) = =~ - L (i - 1).

cN & cn \cn
WEM: E(Ty) = N, Var(Ty) = N(N — 1).

N?2_ N NZ2 N?2—_N /N2—-N N*
MM: E(Ty) = Y Var(Tw) = IR
MM: E(T) 2 5 Var(T) 2 ( 2 ) A
Rem.

N, := 1/ey = E(Ty) is called the effective population size. Example 5.11
indicates that N, is a measure for the speed of the evolution. Under mild
conditions, the time-scaled ancestral process (nggv)])tzo converges in distri-

bution as N — oo to a continuous-time limiting process (RE"))QO, which
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is called an n-coalescent. The most prominent such limiting process is the
Kingman n-coalescent (Kingman, 1982), allowing only for binary mergers of
ancestral lineages. In general, these limiting processes allow for multiple col-
lisions (A-coalescent) or even simultaneous multiple collisions (Z-coalescent)
of ancestral lineages (Pitman 1999, Sagitov 1999, Schweinsberg 2000, M. and
Sagitov 2001).




