4 Duality

Duality can often be interpreted as a one-to-one correspondence between two 'objects'. Each bijection H between two sets A and B is a duality between A and B. We also say A and B are dual w.r.t. H. There exist more involved dualities. The uniqueness theorem for Fourier transforms is for example a duality between the probability measures and their Fourier transforms. We will now learn about a duality for Markov chains. The following Definition is taken from Liggett's book 'Interacting Particle Systems'.

4.1 Def. (Duality)

Two Markov chains $(X_n)_{n \in \mathbb{N}_0}$ with state space S_1 and $(Y_n)_{n \in \mathbb{N}_0}$ with state space S_2 are called <u>dual</u> w.r.t. a bounded function $H: S_1 \times S_2 \to \mathbb{R}$, if

$$E(H(X_n, y) | X_0 = x) = E(H(x, Y_n) | Y_0 = y) \quad \forall n \in \mathbb{N}_0, x \in S_1, y \in S_2.$$

Rem.

For discrete time HMCs with the same finite state space S one can view $H: S^2 \to \mathbb{R}$ as a matrix with entries $h_{ij} := H(i, j)$. Duality then means

$$\sum_{j \in S} \pi_{ij}^{(n)} h_{jk} = \mathbb{E}(H(X_n, k) | X_0 = i) = \mathbb{E}(H(i, Y_n) | Y_0 = k) = \sum_{j \in S} h_{ij} p_{kj}^{(n)}.$$

Thus, $\Pi^n H = H(P^n)^\top \forall n \in \mathbb{N}_0$, where $\Pi = (\pi_{ij})_{i,j\in S}$ and $P = (p_{ij})_{i,j\in S}$ are the corresponding transition matrices. If the matrix H is non-singular, then P can be computed from Π and vice versa, and H is a bijection.

4.2 Theorem (Duality for Cannings Models, Sampling Duality)

There exists a non-singular, left lower, triangular matrix $H = (h_{ij})_{i,j \in \{0,...,N\}}$ such that, for every Cannings model, $\Pi H = HP^{\top}$. The matrix H is, for example, given by

$$h_{ij} := \frac{\binom{i}{j}}{\binom{N}{j}}, \quad i, j \in \{0, \dots, N\}$$

Rem.

The matrix H can be interpreted probabilistically as follows. Sample randomly (without replacement) j balls from a box containing i black and N-iwhite balls. Then, h_{ij} is the probability that all j sampled balls are black (hypergeometric distribution). For a numerical calculation of h_{ij} the following formula is useful.

$$h_{ij} = \prod_{k=0}^{j-1} \frac{i-k}{N-k}.$$

4 DUALITY

Cannings (1974) and Gladstien (1976, 1977, 1978) verified Theorem 4.2 essentially by direct computations of ΠH and HP^{\top} using the formulas for the transition probabilities π_{ij} and p_{ij} of the forward and the backward process respectively. The following probabilistic proof (M., 1999) does not use these formulas and instead exploits the so-called 'random assignment condition' of Cannings models.

Proof.

Clearly, H is left lower triangular with det $H = \prod_{i=0}^{N} h_{ii} = \prod_{i=0}^{N} 1/{\binom{N}{i}} \neq 0$. Fix $i, k \in \{0, \ldots, N\}$ and $n, r \in \mathbb{N}_0$ with $n \leq r$. Let E denote the event that in gen. n there exist exactly k ancestors, i.e. $R_{r-n}^{(r)} = k$, and that all these k individuals are a descendant of the individuals $1, \ldots, i$ of gen. 0. The probability of E can be expressed in two ways.

$$E = \bigcup_{j=0}^{N} \{ R_{r-n}^{(r)} = k \text{ and } X_n^{(i)} = j, \text{ and each of these } k \}$$

ancestors is one of the j descendants}

and, hence, (under the assumptions of the model)

$$P(E) = \sum_{j=0}^{N} P(R_{r-n}^{(r)} = k) P(X_n^{(i)} = j) \frac{\binom{j}{k}}{\binom{N}{k}} = P(R_{r-n}^{(r)} = k) \sum_{j=0}^{N} \pi_{ij}^{(n)} h_{jk}.$$

On the other hand,

$$E = \bigcup_{j=0}^{N} \{R_{r-n}^{(r)} = k \text{ and } R_{r}^{(r)} = j, \text{ and each of these } j$$

ancestors is one of the individuals $1, \ldots, i$

and therefore

$$P(E) = \sum_{j=0}^{N} \frac{\binom{i}{j}}{\binom{N}{j}} P(R_{r}^{(r)} = j, R_{r-n}^{(r)} = k) = \sum_{j=0}^{N} h_{ij} P(R_{r}^{(r)} = j, R_{r-n}^{(r)} = k).$$

The resulting equality divided³ by $P(R_{r-n}^{(r)} = k)$ yields $\sum_{j=0}^{N} \pi_{ij}^{(n)} h_{jk} = \sum_{j=0}^{N} h_{ij} p_{kj}^{(n)}$. Thus, $\Pi^n H = H(P^n)^\top$.

Rem.

Note that H does not depend on the particular Cannings model. The inverse H^{-1} is a left lower triangular matrix with integer entries

$$(H^{-1})_{ij} = (-1)^{i-j} {i \choose j} {N \choose i}.$$

³One can achieve $P(R_{r-n}^{(r)} = k) \neq 0$ (even $P(R_{r-n}^{(r)} = k) = 1$) by considering the case r := n and the ancestral process starting at the state k, so $P(R_0^{(n)} = k) = 1$.

4.3 Corollary (Eigenvalue Theorem, Cannings, 1974)

The transition matrix Π of the forward process has the eigenvalues $\lambda_i = E(\nu_1 \cdots \nu_i), i \in \{0, \dots, N\}.$

Cannings' original proof from 1974 uses an expansion argument leading to a triangular structure. The following proof uses duality.

Proof.

H non-singular. $\Rightarrow \Pi$ has the same eigenvalues as P^{\top} . P is a left lower triangular matrix. \Rightarrow The eigenvalues are $\lambda_i = p_{ii} = \mathbb{E}(\nu_1 \cdots \nu_i)$ by Lemma 3.3.2.

4.4 Example

By Example 3.3.3, for the WFM, $\lambda_i = p_{ii} = S(i,i)(N)_i N^{-i} = (N)_i N^{-i}$, $i \in \{0, \ldots, N\}$.

Rem.

- 1. Let λ be an eigenvalue of P^{\top} (and hence also of Π) and x a corresponding right eigenvector. $\Rightarrow \Pi Hx = HP^{\top}x = H\lambda x = \lambda Hx. \Rightarrow Hx$ is a right eigenvector of Π to the eigenvalue λ . The map $x \mapsto Hx$ is hence an isomorphism between the two eigenspaces to λ of P^{\top} and Π respectively. In particular, these eigenspaces have the same dimension. Another interesting implication of the duality is, that Π is diagonalisable if and only if P^{\top} (and hence also P) is diagonalisable.
- 2. There exists not only one matrix H satisfying $\Pi H = HP^{\top}$. Of some interest is hence the subspace

$$U := \{ H \,|\, \Pi H = HP^{\top} \} = \{ H \,|\, \Pi^n H = H(P^n)^{\top} \,\forall \, n \in \mathbb{N} \}.$$

Typical questions: Basis and dimension of U? Which $H \in U$ are non-singular?

It can be shown (proof not provided here) that dim U = N + 3, if the non-unit eigenvalues of Π (or P^{\top}) are all real and pairwise distinct. This is for example the case for the MM and WFM.

3. Other matrices H are known for particular Cannings models. For example, for the WFM, $\Pi H = HP^{\top}$ for $h_{ij} := (i/N)^j$ or for $h_{ij} := (1-i/N)^j$. The entries of these matrices can be interpreted via urn models of the type 'sampling with replacement'.

The algebraic relation $\Pi^n H = H(P^n)^{\top}$, that is, $\sum_{j=0}^N \pi_{ij}^{(n)} h_{jk} = \sum_{j=0}^N h_{ij} p_{kj}^{(n)}$, can be rewritten probabilistically in terms of expectations. For instance, if $h_{ij} = (i/N)^j$ (WFM), then

$$\operatorname{E}((\frac{X_n^{(i)}}{N})^k) = \operatorname{E}((\frac{i}{N})^{R_n} | R_0 = k)$$

or short,

$$\mathrm{E}^{i}((\frac{X_{n}}{N})^{k}) = \mathrm{E}^{k}((\frac{i}{N})^{R_{n}}).$$

The left-hand side is the k-th moment of the frequency of descendants in gen. n. The right-hand side is the pgf of R_n , conditional on $R_0 = k$, evaluated at i/N. Relations of this form are also known for the <u>K-allele model</u>, where not only two types (descendant or no descendant), but $K \in \mathbb{N}$ types are distinguished.