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4 Duality

Duality can often be interpreted as a one-to-one correspondence between two
‘objects’. Each bijection H between two sets A and B is a duality between
A and B. We also say A and B are dual w.r.t. H. There exist more involved
dualities. The uniqueness theorem for Fourier transforms is for example a
duality between the probability measures and their Fourier transforms. We
will now learn about a duality for Markov chains. The following Definition
is taken from Liggett’s book ‘Interacting Particle Systems’.

4.1 Def. (Duality)
Two Markov chains (X, )nen, With state space S and (Y;)nen, With state
space Sy are called dual w.r.t. a bounded function H : S§1 x Sy — R, if

E(H(X,,y) | Xo=2) = E(H(z,Y,)|Yo=1) VneNgxeS,ye .

Rem.
For discrete time HMCs with the same finite state space S one can view
H : S5? — R as a matrix with entries h;; := H(i, 7). Duality then means

S hp = BH(X0, k)| Xo=i) = B(H(,Y,) Yo=hk) = > hipll).

JES jES

Thus, [I"H = H(P")" ¥ n € Ny, where Il = (7;;); jes and P = (p;;); jes are
the corresponding transition matrices. If the matrix H is non-singular, then
P can be computed from II and vice versa, and H is a bijection.

4.2 Theorem (Duality for Cannings Models, Sampling Duality)
There exists a non-singular, left lower, triangular matrix H = (hy;)i jefo,...N}

such that, for every Cannings model, IIH = HP'. The matrix H is, for
example, given by

hij = NN Z,jE{O,,N}

Rem.

The matrix H can be interpreted probabilistically as follows. Sample ran-
domly (without replacement) j balls from a box containing ¢ black and N — i
white balls. Then, h;; is the probability that all j sampled balls are black (hy-
pergeometric distribution). For a numerical calculation of h;; the following
formula is useful.
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Cannings (1974) and Gladstien (1976, 1977, 1978) verified Theorem 4.2 es-
sentially by direct computations of IIH and HP" using the formulas for the
transition probabilities m;; and p;; of the forward and the backward process
respectively. The following probabilistic proof (M., 1999) does not use these
formulas and instead exploits the so-called ‘random assignment condition’ of
Cannings models.

Proof.
Clearly, H is left lower triangular with det H = Héio hsi = Hi\io 1/ (]j) £ 0.

Fix i,k € {0,...,N} and n,r € Ny with n < r. Let E denote the event

that in gen. n there exist exactly k ancestors, i.e. Rff_)n = k, and that all
these k individuals are a descendant of the individuals 1,...,7 of gen. 0. The
probability of E can be expressed in two ways.

N
E = U{R,@n = k and XV = j and each of these k
=0

ancestors is one of the j descendants}

and, hence, (under the assumptions of the model)

N 7 N
P(E) = Y PR, = k) P(X{) w’)% = PR, =k) > 75 hy.
=0

(k) j=0

On the other hand,

N
E = U{R,(f_)n =k and R = j, and each of these j

=0
ancestors is one of the individuals 1,...,7}

and therefore

N (z) N
P(B) = Y S P(RY =B, = k) = > hy P(RY) = j, R, = k).

=0 j) =0
The resulting equality divided® by P(R". = k) yields Z;V:O ng)hjk =
SN o hygpyy). Thus, I"H = H(P™)T. O
Rem.

Note that H does not depend on the particular Cannings model. The inverse
H~1is a left lower triangular matrix with integer entries

-1 _ i—7 (1 (N
(H )ij - (_1)1 ](J)(z)
= k) # 0 (even P(Rgr_)n = k) = 1) by considering the case
r :=n and the ancestral process starting at the state &, so P(R(()") =k)=1.

30ne can achieve P(R(rr_)n
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4.3 Corollary (Eigenvalue Theorem, Cannings, 1974)
The transition matrix II of the forward process has the eigenvalues \; =
E(l/l"'Vi), 1€ {0,,N}

Cannings’ original proof from 1974 uses an expansion argument leading to a
triangular structure. The following proof uses duality.

Proof.

H non-singular. = II has the same eigenvalues as P'. P is a left lower
triangular matrix. = The eigenvalues are \; = p;; = E(v; -+ -1;) by Lemma
3.3.2. ]

4.4 Example
By Example 3.3.3, for the WFM, \; = p; = S(i,4)(N);N™" = (N);N~,
i€{0,...,N}.

Rem.

1. Let A be an eigenvalue of PT (and hence also of II) and z a corre-
sponding right eigenvector. = IHx = HP'x = H\x = AHz. = Hx
is a right eigenvector of II to the eigenvalue A\. The map = — Hx is
hence an isomorphism between the two eigenspaces to A of PT and II
respectively. In particular, these eigenspaces have the same dimension.
Another interesting implication of the duality is, that II is diagonalis-
able if and only if PT (and hence also P) is diagonalisable.

2. There exists not only one matrix H satisfying IIH = HP'. Of some
interest is hence the subspace

U := {H|IIH=HP'"} = {H|II"H =H(P")" Vn € N}.

Typical questions: Basis and dimension of U? Which H € U are non-
singular?
It can be shown (proof not provided here) that dimU = N + 3, if the

non-unit eigenvalues of II (or P') are all real and pairwise distinct.
This is for example the case for the MM and WFM.

3. Other matrices H are known for particular Cannings models. For exam-

ple, for the WFM, I1H = HPT for hy; := (i/N)’ or for h;; :== (1—i/N)J.

The entries of these matrices can be interpreted via urn models of the

type ‘sampling with replacement’.
The algebraic relation II"H = H(P")'", that is, Zé\fzo Wz(;b)hjk =
Z;V:O hijpg;-), can be rewritten probabilistically in terms of expecta-

tions. For instance, if h;; = (i/N)? (WFM), then

E((%0)%) = E((£)" | Ry = k)

N
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or short, ' _

E((R)") = EM()™).
The left-hand side is the k-th moment of the frequency of descen-
dants in gen. n. The right-hand side is the pgf of R,,, conditional on
Ry = k, evaluated at ¢/N. Relations of this form are also known for the

K-allele model, where not only two types (descendant or no descen-
dant), but K € N types are distinguished.




