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4 Duality

Duality can often be interpreted as a one-to-one correspondence between two
‘objects’. Each bijection H between two sets A and B is a duality between
A and B. We also say A and B are dual w.r.t. H. There exist more involved
dualities. The uniqueness theorem for Fourier transforms is for example a
duality between the probability measures and their Fourier transforms. We
will now learn about a duality for Markov chains. The following Definition
is taken from Liggett’s book ‘Interacting Particle Systems’.

4.1 Def. (Duality)
Two Markov chains (Xn)n∈N0 with state space S1 and (Yn)n∈N0 with state
space S2 are called dual w.r.t. a bounded function H : S1 × S2 → R, if

E(H(Xn, y) |X0 = x) = E(H(x, Yn) |Y0 = y) ∀ n ∈ N0, x ∈ S1, y ∈ S2.

Rem.
For discrete time HMCs with the same finite state space S one can view
H : S2 → R as a matrix with entries hij := H(i, j). Duality then means∑
j∈S

π
(n)
ij hjk = E(H(Xn, k) |X0 = i) = E(H(i, Yn) Y0 = k) =

∑
j∈S

hijp
(n)
kj .

Thus, ΠnH = H(P n)> ∀ n ∈ N0, where Π = (πij)i,j∈S and P = (pij)i,j∈S are
the corresponding transition matrices. If the matrix H is non-singular, then
P can be computed from Π and vice versa, and H is a bijection.

4.2 Theorem (Duality for Cannings Models, Sampling Duality)
There exists a non-singular, left lower, triangular matrix H = (hij)i,j∈{0,...,N}
such that, for every Cannings model, ΠH = HP>. The matrix H is, for
example, given by

hij :=

(
i
j

)(
N
j

) , i, j ∈ {0, . . . , N}.

Rem.
The matrix H can be interpreted probabilistically as follows. Sample ran-
domly (without replacement) j balls from a box containing i black and N− i
white balls. Then, hij is the probability that all j sampled balls are black (hy-
pergeometric distribution). For a numerical calculation of hij the following
formula is useful.

hij =

j−1∏
k=0

i− k
N − k

.
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Cannings (1974) and Gladstien (1976, 1977, 1978) verified Theorem 4.2 es-
sentially by direct computations of ΠH and HP> using the formulas for the
transition probabilities πij and pij of the forward and the backward process
respectively. The following probabilistic proof (M., 1999) does not use these
formulas and instead exploits the so-called ‘random assignment condition’ of
Cannings models.

Proof.
Clearly, H is left lower triangular with detH =

∏N
i=0 hii =

∏N
i=0 1/

(
N
i

)
6= 0.

Fix i, k ∈ {0, . . . , N} and n, r ∈ N0 with n ≤ r. Let E denote the event

that in gen. n there exist exactly k ancestors, i.e. R
(r)
r−n = k, and that all

these k individuals are a descendant of the individuals 1, . . . , i of gen. 0. The
probability of E can be expressed in two ways.

E =
N⋃
j=0

{R(r)
r−n = k and X(i)

n = j, and each of these k

ancestors is one of the j descendants}

and, hence, (under the assumptions of the model)

P (E) =
N∑
j=0

P (R
(r)
r−n = k)P (X(i)

n = j)

(
j
k

)(
N
k

) = P (R
(r)
r−n = k)

N∑
j=0

π
(n)
ij hjk.

On the other hand,

E =
N⋃
j=0

{R(r)
r−n = k and R(r)

r = j, and each of these j

ancestors is one of the individuals 1, . . . , i}

and therefore

P (E) =
N∑
j=0

(
i
j

)(
N
j

)P (R(r)
r = j, R

(r)
r−n = k) =

N∑
j=0

hij P (R(r)
r = j, R

(r)
r−n = k).

The resulting equality divided3 by P (R
(r)
r−n = k) yields

∑N
j=0 π

(n)
ij hjk =∑N

j=0 hijp
(n)
kj . Thus, ΠnH = H(P n)>. �

Rem.
Note that H does not depend on the particular Cannings model. The inverse
H−1 is a left lower triangular matrix with integer entries

(H−1)ij = (−1)i−j
(
i
j

)(
N
i

)
.

3One can achieve P (R
(r)
r−n = k) 6= 0 (even P (R

(r)
r−n = k) = 1) by considering the case

r := n and the ancestral process starting at the state k, so P (R
(n)
0 = k) = 1.
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4.3 Corollary (Eigenvalue Theorem, Cannings, 1974)
The transition matrix Π of the forward process has the eigenvalues λi =
E(ν1 · · · νi), i ∈ {0, . . . , N}.

Cannings’ original proof from 1974 uses an expansion argument leading to a
triangular structure. The following proof uses duality.

Proof.
H non-singular. ⇒ Π has the same eigenvalues as P>. P is a left lower
triangular matrix. ⇒ The eigenvalues are λi = pii = E(ν1 · · · νi) by Lemma
3.3.2. �

4.4 Example
By Example 3.3.3, for the WFM, λi = pii = S(i, i)(N)iN

−i = (N)iN
−i,

i ∈ {0, . . . , N}.

Rem.
1. Let λ be an eigenvalue of P> (and hence also of Π) and x a corre-

sponding right eigenvector. ⇒ ΠHx = HP>x = Hλx = λHx. ⇒ Hx
is a right eigenvector of Π to the eigenvalue λ. The map x 7→ Hx is
hence an isomorphism between the two eigenspaces to λ of P> and Π
respectively. In particular, these eigenspaces have the same dimension.
Another interesting implication of the duality is, that Π is diagonalis-
able if and only if P> (and hence also P ) is diagonalisable.

2. There exists not only one matrix H satisfying ΠH = HP>. Of some
interest is hence the subspace

U := {H |ΠH = HP>} = {H |ΠnH = H(P n)> ∀ n ∈ N}.

Typical questions: Basis and dimension of U? Which H ∈ U are non-
singular?

It can be shown (proof not provided here) that dimU = N + 3, if the
non-unit eigenvalues of Π (or P>) are all real and pairwise distinct.
This is for example the case for the MM and WFM.

3. Other matrices H are known for particular Cannings models. For exam-
ple, for the WFM, ΠH = HP> for hij := (i/N)j or for hij := (1−i/N)j.

The entries of these matrices can be interpreted via urn models of the
type ‘sampling with replacement’.

The algebraic relation ΠnH = H(P n)>, that is,
∑N

j=0 π
(n)
ij hjk =∑N

j=0 hijp
(n)
kj , can be rewritten probabilistically in terms of expecta-

tions. For instance, if hij = (i/N)j (WFM), then

E((X
(i)
n

N
)k) = E(( i

N
)Rn |R0 = k)
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or short,
Ei((Xn

N
)k) = Ek(( i

N
)Rn).

The left-hand side is the k-th moment of the frequency of descen-
dants in gen. n. The right-hand side is the pgf of Rn, conditional on
R0 = k, evaluated at i/N . Relations of this form are also known for the
K-allele model, where not only two types (descendant or no descen-
dant), but K ∈ N types are distinguished.


