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2 Branching processes

Notation: N:={1,2,...}, Ny :={0,1,2,...}

2.1 Definition and branching property

2.1.1 Def. (GWP)
Let Y,;, n € Ny, j € N, be independent and identically distributed (iid)
r.v. taking values in Ny. The process (Z,)nen,, defined via Zy := 1 and

TL+1 = ZYTL], n & NO,

is called Bienaymé-Galton—Watson branching process (GWP). Z,, is inter-
preted as the size of a population at generation n.

Deﬁnepk = P(Zl = /C) = P(Y()l = k?), ke No.
We call (py)ken, the reproduction distribution or offspring distribution.

For i,7,ip_1,...,i0 € Nog we have (as long as the conditional probability is
defined)
7T2'j = P(Zn+1 :]’Zn :’i,Zn,I :’ln 1g«-- ZO :Zo)
= P+ 4Yu=j) = > pyoop, = pl
]1 ..... _]ZGNO
Jrtetii=]

where p = P(Yo1 + --- + Yo = j) denotes the i-fold convolution of the
offsprlng distribution at j. Thus, (Z,)nen, 18 @ HMC with transition proba-
bilities '
7rij = P(Zn+1 :j ‘ Zn = 2) = p;z, Z,] € No.
2.1.2 Example (Poisson GWP)
Let a > 0, py := e “a”/k!, k € Ny. In this case, m;; = e *(ai)? /5!, 1,7 € Ny.
2.1.3 Example (Binary GWP)
Let p € [0,1], po := 1 — p and py := p. In this case,
0 if 7 is odd,
iy = < /2)p7/2( p) /2 if j is even.

Thus,

- 21\ o
P(Zl :22177211:22”) — H <( 7’{{? l)plk(l—p)Qlkl’Lk)

i
k=1 k
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with the convention 2ig = 1. For p = 1 we have Z,, = 2" a.s. for all n € Nj.

2.1.4 Lemma

Let (2, F, P) be a probability space, A, B; € F (i € I, I at most countable)
with B; N B; ¥V 4,5 € I with @ # j and assume that B := U;c;B; satisfies
P(B) > 0. If for every i € I with P(B;) > 0 the probability P(A|B;) does not
depend on i, i.e. P(A|B;) =: ¢ for alli € I with P(B;) > 0, then P(A|B) = c.

Proof.
We have

P(ANB) = PAN|JB) = Y PANB)

iel iel
= Y P(AB)P(B) =c Y P(B) = cP(B).
icl ~ icl
P(B)>0 ¢ P(B;)>0

Now divide by P(B) > 0. O
2.1.5 Lemma

Let (ZT(L Jneng, | € N, be independent GWPs, each distributed as Z :=
(Zn)neNO Then for any k € N, the process Z = (Zn)nen,, defined via

Zz 1 Z ) for all n € Ny, is a HMC with the same transition prob-
ab1]11;1es as Z

Proof.

Let j,i1,...,i, € Ng with P(Z" = 4,..., 2% = 4,) > 0. Define i =
i1 + - - - + 1. The conditional probability

P(Znr =31 2V =in,..., 20 = iy)

PZW = g1, 28 =G| 20 =iy, 2 =)

n

™

J15-JkENo
Jittge=J
k
l . . *1 *7
SN I [ PN R S § P
J1,-Jk€ENg =1 Jlyeee, ]kENoAl 1
Jite+ie=j JiteFie=J
only depends via ¢ =141 +---+ i on 7,...,17. Lemma 2.1.4. =
P(Zppr=jlZn=1) = P(Zn1=]] U {Z) =ir,... 2 = ir})
1] 4eeey ik'ENO
11+ =1
= p;za Z)] € N0~
The calculation does not change, if the condition Z = ¢ is replaced by
Zn =1, Z 1 =1y, 2Ly = 1. = Z is a HMC with the same transition

probabilities as Z. O
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In the following let N := X;enNp. For ¢ € N let m; : NI — Ny be the
projection to the i-th component, i.e. m;(k) = k; for all k = (k;);en € Ng°.
Furthermore, let G denote the smallest o-algebra in Ni° such that all projec-
tions 7;, © € N, are measurable. G is called the product-o-algebra of Ng°. It

is easily seen that G = F(m;,i € N) = F({m; *(A;) :i € N, A; C Np}).

2.1.6 Theorem (Branching Property)
Forr e Ny, ke Nand A € G,

P(<Zn)n>r € A ‘ Zr = k) = P((Zn)nEN S A)? (*)

where Z, = Z?Zl 79 and (Z9Vneny, 7 € {1,...,k}, are independent
GWPs, all distributed as Z := (Z)nen, -

Proof.

For fixed r € Ny and k£ € N let D be the set of all A € G satisfying (x).
It is easily seen that D is a Dynkin system in NJ°. Consider the system &
of all A of the form A = A; x---x A,, Xx Ng x Ny x -+ with m € N and
Ay, ..., Ay € Np. Obviously, € is a N-stable generator of G, i.e. F(£) =G. If
we can verify that & C D, then the statement follows, since then G = F(£) =
D(€) C D(D) = D. It remains to verify that (x) holds for A € £. Each such
A is a at most countable union of sets of the form

{k}l}X"‘X{]{fm}XN()XNoX"' (**)

with m € N and ky,...,k, € Ny. Because of the g-additivity of the two
probability measures on the left-hand and right-hand side in () it suffices
to verify (x) for sets of the form (xx). In this case the left-hand side in (x) is
equal to

P(Zeyn =k, Zoym =k | Z = k)

= H P(Z,urn = ]{?n | Zr+n—1 - knfl) = H Thp—1,kn >
n=1

n=1

where ky := k. The right-hand side in (x) is as well equal to
P(Zy=ki,.... 2y =kn) = [[PZn=bn|Zur =kn-1) = [] Tt0riho:
n=1 n=1

since, by Lemma 2.1.5, Z has the same transition probabilities as Z. O

2.1.7 Corollary
For k,n € Ny and any function h : Ny — [0, 00),

E(MZpir) | Z1 = k) = E(h(i&ﬁ”))

where (Zflj))neNO, J € N, are independent copies of Z.
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Proof.

For k = 0 both sides are equal to h(0). Assume now that k € N. For h = 1p
with B C Ny the statement follows from Theorem 2.1.6 (branching property)
with the choice A := 7, }(B) € G. Thus, the statement holds for elementary
functions. If h : Ny — [0, 00) is arbitrary, then there exist elementary func-
tions 0 < hy < hy < --- with lim,,, o Ay, = h. The statement then follows
by two-times applying the theorem of monotone convergence. ([l

In order to compute the mean and the variance of Z,,, the following lemma
will be useful.

2.1.8 Lemma

Let X1, Xo, ... be iid Ny-valued r.v. and let Y be a further Ny-valued r.v. be-
ing independent of (X, ),en. If g denotes the probability generation func-
tion (pgf) of Xy and h the pgf of Y, then S := Z;/:l X, has the pgf
hog and E(S) = E(Y)E(X;) € [0,00]. If E(S) < oo then Var(S) =
Var(Y)(E(X,))? + E(Y)Var(X).

Proof.

Let s € [0,1]. For k € Ny, E(s°|Y = k) = E(sNT XY = k) =
E(sX1 ... %) = (E(sY))* = (g(s))*. Multiplication with P(Y = k) and
summation over all k& € Ny yields

= YOGSy =hpP = Y ()P =) = hig(s))

k=0
Thus, S has the pgf hog. It follows that E(S) = (hog)' (1) = h'(g(1))¢'(1) =
h'(1)g'(1) = E(Y)E(X;) and
B(S(S—1)) = (hog)"(1) = h"(g(1))(¢'(1))* + 1 (9(1))g"(1)

= W'(1)(g'(1)* + K (1)g"(1)

= E(Y(Y - 1)(E(X1)* + EQY)E(X; (X; — 1))
Assume now that E(S) < co. Summation of E(S) — (E(5))? = E(Y)E(X;) —
(E(Y))*(E(X1))? yields
Var(S) = B(Y/(Y —1))(E(X1))” + E(Y)E(XT) — (B(Y))*(E(X)))*

= E(Y?)(E(X1))” + E(Y)(E(X}) - (E(X1))%) = (E(Y))*(E(X1))?
= Var(YV)(E(X1))? + E(Y)Var(X)). O

Now let f, denote the pgf of Z,, i.e.

fals) = E(s™) = Y P(Z,=k)s",  s€[0,1].

k=0
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Define f := fi, i.e. f(s) = > poypks™, s € [0,1]. Lemma 2.1.8 (applied with
Y = n—1 and XJ = Yn_l,j) y1€1dS

fn - fn—l o f, n E N,
and
E(Z,) = mE(Z,-1), neN,
where m = f'(1) = Y77, kpr, = E(Z;) is the expected number of offspring
of any individual. Moreover, for m < oo, Lemma 2.1.8 yields
Var(Z,) = 0*E(Z,_1) + m*Var(Z,_1), neN,

where o2 := Var(Z;) = > o0 k?pr — m? = f"(1) + f/(1) — (f'(1))? is the
reproductive variance. In particular,
fo = forof

—

n—times

is the n-fold convolution of f and the mean of Z,, is |E(Z,) = m" |, n € Nj.
Moreover, if m < oo, an induction on n shows that the variance of 7, is

O_an—l(mn _ 1) )
Var(Z,) — o— it m# 1,
no? ifm=1.

2.2 Extinction probability

Given: GWP Z = (Z,,)nen, with Zy = 1 and offspring distribution (pg)ken,-
Notation: f, := pgf of Z,.
Known: f, = fo---o f, where f(s) := Zpksk, s € [0,1].

Y k=0

m:=E(Z)) = f(1-) = kak € [0, o0
k=1

2.2.1 Def. (Extinction Probability)
The event

Q = {Z, =0 eventually} := h}gg}f{Zn =0} := U ﬂ {Z,, =0}

neNm=n

is called the extinction event and

q = P(Q) = P(Z, =0 eventually) = lim P(Z,=0) = lim f,(0)

n—o0 n—oo

the extinction probability of Z.
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2.2.2 Theorem (Fixed Point Theorem)

The fixed point equation f(s) = s has exactly one solution in [0,1) if m > 1
and no solution in [0,1) if m < 1 and p; < 1. The extinction probability q is
the smallest fixed point of f in the interval [0, 1].

Proof.
We exclude the trivial case p; = 1. From f,(0) — ¢ and the continuity of f
it follows that

(@) < [(12(0)) = fa12(0) = ¢

Thus, f(¢) = q. Now let a € [0, 1] be arbitrary with f(a) = a. By induction
on n € N it follows that f,(0) < a: For n = 1 this is clear, since f is
nondecreasing and hence f1(0) = f(0) < f(a). The induction step from n to
n+ 1 reads f,11(0) = f(f.(0)) < f(a) = a. Letting n — oo yields ¢ < a, i.e.
q is the smallest solution of the equation f(s) = s in [0, 1].

Define ¢(s) := f(s) — s, s € [0,1].
Assume first that m < 1 and p; < 1. Then, for all s € [0, 1),

P(s) = fils) =1 < f[(1) =1 <0,

i.e. ¢ is strictly decreasing. In particular, ¢(s) > ¢(1) = 0, so f(s) > s for
all s € [0,1). Therefore, the equation f(s) = s has no solution in [0, 1).

Assume now that m > 1. Then,

1—f(s)

T — f'(1) = m > 1, s — 1.

Thus, 1 — f(s) > 1 — s, s0 ¢(s) < 0 for all s in a left neighborhood of 1. On
the other hand, ¢(0) = f(0) > 0. Thus, by the intermediate value theorem,
there exists s € [0,1) with p(s) = 0, i.e. f(s) = s. To see that there is
only one such s, assume that there exist 0 < s1 < s < 1 with f(s1) = s1
and f(s2) = sa. Then, ¢(s1) = ¢(s2) = 0 = ¢(1). Thus, by the theorem of
Rolle, there exist a,b with 51 < a < so < b < 1 and ¢'(a) = ¢'(b) = 0, i.e.
f'(a) = f'(b), in contradiction to the fact that f’ is strictly increasing! if
m > 1. Thus, the assumption is wrong, so there exists exactly one s € [0,1)
with f(s) = s. O

2.2.3 Theorem
If py <1 then P(Z, — 0) + P(Z, — o0) = 1.

1Since m > 1 there exists ko € {2,3,...} with pg, > 0. For all s € (0,1) it follows that
T7(s) = > piy k(k — V)prs®=2 > ko(ko — 1)prys® =1 > 0. Hence, f is strictly increasing.
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Proof.
For ¢ = 1 there is nothing to show. Thus, let ¢ < 1. Then, by Theorem 2.2.2,
m > 1 and f’ is strictly increasing.
Assume that f’(gq ) > 1 Then for all s € (¢,1), f'(s) > f'(¢) > 1, and hence
f(1) —q= f(1) ff ds>f1ds—1—q,sof()>1,an
obvious Contradlctlon Thus f’ (q) < 1.
Induction yields

ful@) = (f'(@)", neN
For n = 1 this is clear, since f; = f. The step from n to n+1reads f, . ,(¢) =
o 1Y10) = @)@ = @70~ F@r 5@ = Py,
Case 1: Let g € (0,1). Then, for all k,n € N,

k

P2 <k =3 P i (Zo— 0 < Jale) _ Ua))"

q* _q’“ gk

J=1

=Y P1<Z,<k) < oo

n=1
Borel-Cantelli lemma. = P(1 < Z, < k oc-often) = 0, and the assertion
follows for ¢ > 0.

Case 2: Assume now that ¢ = 0. Then, py = f(0) = f(¢) = ¢ = 0 and hence
7 < Zy < --- almost surely. For each n € N it follows that

P(ﬁn{zmz m+1}> = J}ijﬂwp(njﬁnl{zm: m“})

= lim Pk=2,=Zp1="="ZpiN)
N—oo —
= lim P(Z, =k)pk---pt (since 7, < Zy <--- as.)
N—o0 N——
= N —times
= lim Y P(Z,=k)p))" = lim f(p)) "E" £.0).
N—oo N—oo

Thus,

P(Z, = Z,.1 eventually) = P< U ﬂ {Zpir = Zm})

neN m=n

n—oo

zlmp(ﬂw-—wm)zggmmzqza
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i.e. P(Z, - o) = P(Z, < Zy+1 oo-often) = 1— P(Z, = Z,,1 eventually) =
1. U

2.2.4 Def.
A GWP Z is called subcritical if m < 1, critical if m = 1 and supercritical if
m > 1.

2.3 Critical case

Given: GWP Z = (Z,,)nen, with Zy =1
It is assumed that m =1 and p; < 1.

Known:
e q:=P(Z,—0)=1
e E(Z,)=m"=1foralneN,

e Var(Z,) = no? — oo
Note that p; < 1 is equivalent to o% := Var(Z;) > 0.

2.3.1 Lemma (Basic Lemma)
Ifm =1 and ¢* € (0,00) then

i 1 1 1 o?
im — — = —
nmoon\1— fu(s) 1—s 2

uniformly for s € [0,1).

2.3.2 Theorem (Yaglom Limit)
Let m =1 and 02 € (0,00). Then

2
(a) lim nP(Z,>0) = — (Kolmogorov, 1938)

n—00 0‘2 ’

2

Z
(b) hmE(—” Zn>0> - % and
n

n—o0

(c) Exponential limit law:

, 2y,
lim P(— <u

n—00 n

Ly > 0) = 1- 6_2“/“2, u > 0. (Yaglom, 1947)

Rem.
Conditional on Z, > 0, the r.v. Z,/n converges in distribution to an expo-
nential distribution with parameter 2/02.
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Proof.

(of Lemma 2.3.1) Let s € [0,1).

Taylor expansion in 1: f(s) = s+ %2(1 — )% +1(s)(1 — s)? for a continuous
function r with 11{111 r(s)=0.=

(S f(s) —s _ G =8’ +r(s)(1 )
1—f(s) 1-s (1= f(s)(1 =) (1= f(s))(1 =)
N o2 B o?
O] (7 + 7"(3)> =5 T p(s),
where again p is continuous with ligl p(s) = 0. Iteration yields
1 1 1 1= 1 1
H(l —fals) 1 —s) - E; (1 —J(fis) 1 —fj(5>>
- G A

The convergence f,(s) — 1 is uniform in s € [0, 1), since f,,(0) < f.(s) <1
and f,,(0) — 1. The result follows since p is bounded. O

Proof.
(of Theorem 2.3.2)

@ 0P >0 = 0= 10) = (3 (g 1) +5) @
Lemma 2.3.1 (applied with s = 0).

Z CBZ) 1 g
(b)E<7 Z”>0) = M- f0) ~ PGS T
(c) Let u > 0. Define 3 := 2/c?.

—u/n\ __ — —u/n
B 2,5 0) = DB g i)

_ 1 1 1 1 . 1 -
B nP(Z,>0)\n\1— f.(e-¥/n) 1—eur n(l —e-w/n)
converges by (a) and Lemma 2.3.1 to

1/1 1\ 1 Bu B
1_3(3+5> “ ' FBtu  Btw

where the uniform convergence in Lemma 2.3.1 is essential here.

The map u +— % is the Laplace transform (LT) of Exp(3). By the continuity
theorem for L'T the pointwise convergence of the L'Ts implies the convergence
in distribution. 0
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2.4 Subcritical case
Given: GWP Z = (Z,,)nen, With Zy =1 and m := E(Z;) < 00
Taylor expansion of the pgf f of Z; at 1:

f(s) = 1=m(1—35)+r(s)(1—s), s €0,1].

2.4.1 Lemma (Comparison Lemma)
For all 6 € (0,1),

Zr(l—ék) < 00 = Zpkklogk < o0.

k=1 k=1

Rem.
The condition on the right-hand side is equivalent to E(Z;log Z;) < oc.

2.4.2 Theorem (Kolmogorov, 1938)
If po < 1 and m < 1 then the limit

o(0) = tim LZn >0

n—00 mm

exists with ¢(0) = 0 if E(Zlog Z1) = oo and ¢(0) > 0 otherwise.

Rem.
The theorem thus states that P(Z, > 0) behaves (up to a multiplicative
constant) as m™ provided that E(Z; log Z;) < oo.

The following result shows convergence conditional on non-extinction.

2.4.3 Theorem (Convergence for subcritical GWPs, Yaglom, 1947)
If po < 1 and m < 1 then for each k € N the limit

b = lim P(Z, =k|Z, > 0)

n—o0

exists and Y, by =1, i.e. (by)yen defines a distribution on N. The mean of
this distribution is finite if and only if E(Z;log Z) < 0o and in this case

i B =
= )

#(
The pgf g(s) := > po, bis®, s € [0,1], is a solution to the equation

9(f(s)) = 1=m(l—g(s)), sel0,1].
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Proof.
(of Lemma 2.4.1) For all s € [0, 1),

o) = m- Zsﬂ<1_zpks)

§>0 k>0
= m= 4 p) = m=) ) py
§>0 k>0 >0 n>0 k>0 n>k
= m-— gs—l—g(gpk)s—m gan,
n>0 n>0 n>0

where a, :=1—>"1"_ Pk = D j=n Pk> 7 € Ng. Note that (1) = 0 and, hence,
Ym0 0n = m. In particular, r is a nonnegative nonincreasing function on
[0, 1]. Define o := —log . r nonincreasing. = For j € N

j J
r(1—9) +/ r(l—e)dz > Y r(1-06"
1

k=1

j 1 1-87
> / r(l—e *)dx = —/ r(s) ds,
1 1

afi_s 1—s

where the last equality follows from the substitution s :=1 — e~**. Thus,

dr1-0") < 0 = /1 f@sds < oo0.

k>1

But, for all s € [0, 1),

A BV

j=0 n>0 Jj=0 n>0 Jj=0
k
S0 ICED IS DR SEED M O DAL
E>0 n>0  k>n E>0 k>0 \n=0
k
= Y (e = (T
k>0 n=0 k>0 Nn>k
Integration yields
n—1 1
ds = a, |s"ds = = a —_
[ = [ (Se) RPN
k>0 Nn>k k>0 n>k: n>1 k=0

Since Zk 0 T +1 ~ logn as n — oo, this series converges if and only if the
series ) ., a,logn converges. Now,

Santogn = 3 (Sn)oan = S toan

n>1 n>1 k>n k>2 n=1
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Since ZZ: logn ~ flk logzdz = [zlogz — z)} ~ klogk as k — oo, this

series converges if and only if Zkzl prklogk < oo. O
Proof. 1— f(s)
(of Theorem 2.4.2) We have ————= = m —r(s). Replacing s by fi(s) yields
-5
1 — fry1(s) _ m(l _ T(fk(s))>
1 — fr(s) m

and hence (taking products) l—l—fn(s) =m" ﬁ (1 — u)

k(S
— S m
k=0

0<r/m<1 = m™1— fu(s))/(1 —s) is nonincreasing in n and hence
converges to a limit ¢(s) > 0. In particular (choose s = 0) P(Z, > 0) =
1 — f.(0) ~ m"™p(0). The well-known relation between convergence of sums
and products shows that ¢(0) > 0 if and only if ), r(fx(0)) < co. Now,
1 — f(s) <m(1 — s) and, by induction, 1 — fi(s) < m*(1 — s) for all k € N.
Similarly it follows that 1 — f.(s) > (f'(s0))¥(1 — s) for s > sy and with
so = po > 0 it follows with the notation a := f’(py) > 0 that

1—m" < fi(0) = fria(po) <1 —a" (1 —py) < 10,

where b:=a A (1 — pp). From Lemma 2.4.1 it follows that

Zr(fk(())) < 00 = Zpkklogk: < 0. O

k>1 k>1

Proof.
(of Theorem 2.4.3) Define

_ L) 1(0)

gn(s) = E(s™[Z, >0) = 1= ful(s)

1 <7

1—f000 = 1-£(0)

B om = r(fiuls)
= ==l =gy

We have fi(s) > fx(0) and r is nonincreasing. = The fraction in the product
is greater than or equal to 1. Thus, g,(s) is nonincreasing in n and, hence,
converges to some ¢(s). Obviously, ¢,(0) = 0 and g¢,(1) = 1 and, hence,
g(0) = 0 and ¢(1) = 1. In order to verify that g is continuous at 1, it
suffices (by the monotonicity of g and since f(0) — g = 1) to verify that
limg 00 9(f%(0)) = 1. We have

L= fol£e0) _ | 1= fil£a(0))
1 — £.(0) 1 — f.(0)

— 1—m", n — oo.

gn(fx(0)) = 1—
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Thus, g(fx(0)) = 1 —m* and hence limy_.o, g(f%(0)) = lim;_,o (1 — m*) = 1.
Therefore, g(1—) = 1, so ¢ is continuous at 1. By the continuity theorem for
pet’s, all the limits

by == lim P(Z,=k|Z,>0), keN,

n—oo

exist and g is as well a pgf of the form g(s) = >, bys®. It follows that

oy e L=g(fk(0) m—k Thm. 242 1
2= g0 =l T T M hw 50
o _ . 1_fn+1 o N 1_fn+1 1_f(f7L(0))
B ey (0 B ey (0 R Ry A
Letting n — oo yields go f =1 — (1 — g)m. O

2.5 Supercritical case

Given. (Z,)nen, GWP with reproduction r.v. Z;, where m := E(Z;) €
(1,00) and ¢? := Var(Z;) € (0,00|. ¢ :== P(Z, — 0) (extinction probability)

2.5.1 Theorem (Convergence Theorem for Supercritical GWPs)
Under the above assumptions there exist positive numbers ki, ko, ... such
that W,, .= k,Z, converges as n — oo almost surely to a non-degenerate
nonnegative real r.v. W. Moreover, P(W = 0) = q.

Ifa € [0,1/m) then a"Z, — 0 a.s..

Ifa € (1/m,00) then a"Z, — Zy a.s., where Z,(w) := 0 for w € {Z,, — 0}
and Z.o(w) := oo for w € {Z,, — oo}.

n

If E(Z, log Z1) < oo then one can choose k,, := m™".

IfE(Z,log Z1) = oo then m™"Z,, — 0 a.s. as n — 0.

Rem.

The numbers k,, n € N, are called Seneta constants (Seneta, 1968). In
particular, for E(ZjlogZ;) < oo and k, = m™™, one speaks of the
Theorem of Kesten and Stigum (1966). Heyde (1970) has also provided im-
portant contributions to the convergence properties of supercritical GWPs.

2.5.2 Theorem (Characterization of the limit )
The LT v of W is a solution to the equation

(mu) = (fo)(u), u=0.
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The mean E(W) = —’(0) is finite if and only if E(Z; log Z;) < oo and in
this case there exists exactly one solution 1 of the above equation, which
satisfies 1(0) = 1 and whose derivative at 0 exists and is equal to a given
value.

Recapitulation.

pr = P(Z1 =k), k € Ny.

pgl f of Zy, f(s) :=E(s%) = 7 pes”™, s € [0,1].
Extinction probability ¢ := lim,, ., P(Z, =0) < 1.
q = smallest fixed point of f in the interval [0, 1].

Proof.
(of Theorem 2.5.1) f strictly increasing. = g := f~! exists.

Define gy :=id, g, :=go---0g,n € N.
—_——
n—times
g is non-decreasing, concave, differentiable and maps [g, 1] to [g, 1].
Define X,,(s) := (gn(s))?" and F,, := F(Z1,...,Z,), s € [¢,1], n € Ny.
X, (s) is F,-measurable. Moreover, for k € Ny,

E(Xoi1(s) [ Zo=k) = E((gnra(s)*" | Z, = k)
= E((gasa(s)) b | Z, = k)
((9n+1(3) Yot +Ynk)
E ((gn+1(s)

(gn+1 S
= ( (gnJrl(S
= (f(gn+1(9))

= B(Xoe1(5) | Za) = (9a(5))% = Xo(s) as.

= E(Xni1(s) | Fn) = Xn(s) ass.

= (Xn($))nen, is a nonnegative martingale w.r.t. F':= (F},)nen,-

)"

)

)

)

)') B ((gnsa(s) ")
)

)¥ = (ga()".

= Xoo(s) := lim Xn(s) exists a.s. (martingale convergence theorem)

Clear: 0 < X ( ) <1, since 0 < X,,(s) <1V neN,.

dominated convergence. = E(X(s)) = E(Xi(s )) = E(Xo(s)) = s a.s.
E(XG11(8) [ Fn) = (E(Xnii(s) [ Fa))? = X7(s) a

= (X?2(5))nen, submartingale w.r.t. F' (again with values in [0, 1]).
= E(X2(s)) > E(X%(s)) > (E(X1(s)))?, since Z; is non-degenerate.
= Var(X(s)) > Var(X;(s)) > 0.
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Define ¢, (s) := —log g,(s), Y(s) := —log X ($).

= ¢,(8)Z, 23 Y (s) | and Y (s) is non-degenerate, which proves the first part
of Theorem 2.5.1, except that it remains to verify that Y (s) is a.s. finite.

f(s) <sforselgl]. = g(s)>sforse|ql]l. = gn /" goo for some goo.
s = fulgn(3)) < fu(goo(5)) = @, 1f goo(s) < 1. = goo(s) = 1 for s > q.

Taylor expansion of f around 1 (as in the critical case). = 1 — f(s) =
(m—r(s))(1—s).

Replacing s € (g, 1) by g(s) yields
1—g(s) 1 1 1

I—s  m—r(g(s)) myp— L)

Repeating this and taking products. =

m (1= go(s) =

657

This tells us something on ¢, (s), since — logx ~ 1—x for  — 1. In particular

ca(s)  L=ga(s) _ 1 m"I—gu(s)) _ 1 1

(%)

—_—  ~

1
eia(s)  T=gaals)  mmr i (1—gua(s))  mi—reb) — m

since g,(s) = goo(s) = 1 and r(1—) = 0. Now use this to verify that Y (s) :=

lim ¢,(s)Z, is a.s. finite.
n—oo

Again, we have, with the notation P(A|Z,) := E(14|Z1) := E(14| F(Z1))
P(Y(s) <o0) = E(PY(s) <x|Z))
= E <hmcn ) Zn, <oo‘Zl)>

® g

n—oo

A
hm cn(8)Zn-1 < oo)) ) ((+) follows from

the branchmg property, see Appendix 1)

(
(i
(o))
(G <’”ﬁ5<m> )

<

— R((PY(5) < 0))%) = F(P(Y(s) < o).
Analogous: P(Y(s) =0) = f(P(Y(s) =0)).

= B
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= The probabilities P(Y(s) < oo) and P(Y (s) = 0) are both fixed points
of f and can hence only be equal to ¢ or to 1. Y (s) is non-degenerate. =
P(Y(s)=0)=gq.

V)
I
=
.

g
o
I
&
B

=
IA

P(Y(s) < 00)

= | P(Y(s) < o0) =1|for s > q. We have

me,(s) A oo & H (1 — W) >0 < Zr(gn(s)) < 0.

n=1 n=1

Choose sy € (g, 1) such that mg := f'(sg) > 1 and k such that gi(s) > sq.
Since
my(l—s) <1— fu(s) <m"(1—3s) Vs € [s1],

it follows that
L—my "™ (1= gi(s)) < guls) S T—m (1= s).
By the comparison lemma,

lim m"c,(s) < 0co. <= E(Z;log Z;) < 0. (xx)

n—o0

If E(Z;log Z;) < oo, then we can hence choose k,, := m™", since then k,Z,, =

Zﬁfj}lﬁs converges a.s..
If B(Z1log Z1) = 00, then m™"Z, = 2% — 0 as.
(am)"

If a < 1/m, then always a"Z, =

cn(8)Zn — 0 as..

mnep(s)
Assume now that a € (1/m, o0). Then,

cn(s) 1—gn(s) 1—s

~ =

ar ar [Ti=1 alm — r(gk(s)))

and this expression has to converge to 0 for s € (¢, 1), since
1 =m-r(g) < m—r(g(s) — m.
Therefore,

0 ifZ,—0,
o~ if Z, — oo.
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Appendix 1 to (4): We have
{lim c,(s)Z, < 00} = {(Zu)wo € A}
where
A; = {a = (an)n>1 € NJ° | The sequence (¢, (s)an)n>1 converges in R}.

Forn > 1let m, : NJ® — Ny denote the projection to the n-th component, i.e.
m(a) = a, for all n > 1 and a = (a,)n>1 € N§°. Further, let G := F(m,,n >
1) denote the product-o-algebra. Then,

As = {a=(an)n>1 € NJ| (cn(s)an)n>1 is a Cauchy-sequence in R}

= (1 U [ {a= (@)1 € N7 [fei(s)mla) = ¢j(s)m(a)] < 1}

NeNngeNi,j>ng

= N U N @s)m—cs)m) -+ ) € 6,

NeNngeNi,j>ng

since, with m; and 7;, also the map ¢;(s)m; — ¢j(s)m; : NI — R is G-B-
measurable.

Now, let k € Ny and let (Z)nen,, j € {1 k} be independent GWPs,
each distributed as (Z,)nen,. Define Z,, Z - 7. Then,

P(lim ¢,(8)Z, <0 |Z1=k) = P((Zy)ns1 € As| Z1 = k)

n—o0

— P((Zn)nen € A;)  (branching property, see before)

= P(lim ¢u(8)Zy_1 < 00) = Z lim ¢, (s Z(J | < 00)
n—oo

n—o0

= ﬂ{gglgo en(5)Z9), < 00}) = (P(lim cy(5)Zn_y < 00))*.

n—oo

Therefore,

P(lim ¢,(8)Z, < 00| Zy) = (P(lim ¢,(8)Z,_1 < 00))?"  a.s.

n—o0 n—oo

and taking the mean yields (+).

Proof.
(of Theorem 2.5.2) Let s € (¢,1). Known (from the previous proof):
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o 1
Cny1(8) — —. With n — oo it follows for u > 0
c(s)  m

Ylmu) = E(e ™)
< E(efmucni*l(s)zn#»l)
_ E(E(e—mucn+1(s)2n+1 |Zl))

Z
_ ((E (eum(cg:gs(;’cn(s)zn)> 1>

(follows from the branching property,
see Theorem 2.1.6 and Corollary 2.1.7)

= f(¥(u),

where the theorem of dominated convergence was used several times.

The substitution u — u/m and an application of g := f~! yields ¢ (u/m) =

g((u)). Since ¥(u) > lim (u) = lim E(e™¥®) = P(Y(s) = 0) = ¢ one
U—00 U—r 00

can iterate this to

(¥)

1L —=9Yu/m") = 1—=g,(¢¥(u) = O(m™) < E(Z1log Z;) < oc.

1 convex. = The map h — %(h) is non-increasing on (0, 00). = The left-
hand side above is equivalent to %(h) = O(1), i.e. equivalent to the existence

of the limit limy_,o l_i(h) < 00, i.e. equivalent to the property, that —’(0)

exists and is finite. This is well-known (see Appendix 2) to be equivalent
to E(Y(s)) < oo and in this case the equality E(Y(s)) = —«'(0) holds.

Therefore, the second assertion follows.

To prove the uniqueness statement let 1) and ¢ be two solutions with ¢(0) =
¢(0) finite and ¢’(0) = ¢'(0) finite. Then, for any u > 0
[Y(u) = o(w)] = [f(d(u/m)) = f(¢(u/m)] < mlp(u/m)— d(u/m)]
< o <m"Y(u/m”) = dlu/m”)]
gt = () = @mn) - o)

u/mn

— ul[g'(0) = ¢'(0)] = 0.

Appendix 2

2.5.3 Lemma

Let X be a nonnegative real r.v. and ¢ : [0,00) — (0, 1] the LT of X. Then,
the mean E(X) is finite if and only if the derivative ¢'(0) of ¢ at 0 (in R)
exists. In this case, E(X) = —¢/(0).
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Proof.

‘=" Let E(X) < oo. Define f : [0,00) — [0,00) via f(u) := E(Xe“X) for
all u € [0,00). Then, obviously, —% is a antiderivative of f. By the mean
value theorem there exists for each h > 0 a mean-value £ € [0,h] with

1—¢(h) = —(h) — (—¥(0)) = [ f(u)du = f(€)h. Thus,

1 —(h)
h

Letting A — 0 (and hence also £ — 0) yields (on the left-hand side by the
def. of the derivative of 1) in 0 and on the right-hand side by dominated
convergence) —'(0) = E(X) < oc.

= f(§) = B(Xe ™).

‘«<": Conversely, assume that —’(0) < oo. Then, ¢’ is defined on the full
interval [0, co) and

—'(u) = BE(Xe %), u € [0, 00).

Letting u — 0 yields (on the left-hand side by the def. of the right-sided limit
and on the right-hand side by dominated convergence)

—1'(0+) = E(X).

On the other hand, the map u +— —1'(u) = E(Xe “X) is non-increasing on
[0, 00). Thus,

—¢'(u) < —4(0).
Letting u — 0 yields E(X) = —¢/(0+) < —¢/(0) < o0. O



