2 Branching processes

Notation: $\mathbb{N} := \{1, 2, \ldots\}, \mathbb{N}_0 := \{0, 1, 2, \ldots\}$

2.1 Definition and branching property

2.1.1 Def. (GWP)

Let Y_{nj} , $n \in \mathbb{N}_0$, $j \in \mathbb{N}$, be independent and identically distributed (iid) r.v. taking values in \mathbb{N}_0 . The process $(Z_n)_{n \in \mathbb{N}_0}$, defined via $Z_0 := 1$ and

$$Z_{n+1} := \sum_{j=1}^{Z_n} Y_{nj}, \qquad n \in \mathbb{N}_0,$$

is called <u>Bienaymé–Galton–Watson branching process</u> (GWP). Z_n is interpreted as the size of a population at generation n.

Define $p_k := P(Z_1 = k) = P(Y_{01} = k), \ k \in \mathbb{N}_0.$

We call $(p_k)_{k \in \mathbb{N}_0}$ the <u>reproduction distribution</u> or <u>offspring distribution</u>.

For $i, j, i_{n-1}, \ldots, i_0 \in \mathbb{N}_0$ we have (as long as the conditional probability is defined)

$$\pi_{ij} := P(Z_{n+1} = j | Z_n = i, Z_{n-1} = i_{n-1}, \dots, Z_0 = i_0)$$

= $P(Y_{n1} + \dots + Y_{ni} = j) = \sum_{\substack{j_1, \dots, j_i \in \mathbb{N}_0 \\ j_1 + \dots + j_i = j}} p_{j_1} \cdots p_{j_i} =: p_j^{*i},$

where $p_j^{*i} = P(Y_{01} + \cdots + Y_{0i} = j)$ denotes the *i*-fold convolution of the offspring distribution at *j*. Thus, $(Z_n)_{n \in \mathbb{N}_0}$ is a HMC with transition probabilities

$$\pi_{ij} := P(Z_{n+1} = j | Z_n = i) = p_j^{*i}, \quad i, j \in \mathbb{N}_0.$$

2.1.2 Example (Poisson GWP)

Let $\alpha > 0$, $p_k := e^{-\alpha} \alpha^k / k!$, $k \in \mathbb{N}_0$. In this case, $\pi_{ij} = e^{-\alpha i} (\alpha i)^j / j!$, $i, j \in \mathbb{N}_0$.

2.1.3 Example (Binary GWP)

Let $p \in [0, 1]$, $p_0 := 1 - p$ and $p_2 := p$. In this case,

$$\pi_{ij} = \begin{cases} 0 & \text{if } j \text{ is odd,} \\ {i \choose j/2} p^{j/2} (1-p)^{i-j/2} & \text{if } j \text{ is even.} \end{cases}$$

Thus,

$$P(Z_1 = 2i_1, \dots, Z_n = 2i_n) = \prod_{k=1}^n \left(\binom{2i_{k-1}}{i_k} p^{i_k} (1-p)^{2i_{k-1}-i_k} \right)$$

with the convention $2i_0 = 1$. For p = 1 we have $Z_n = 2^n$ a.s. for all $n \in \mathbb{N}_0$.

2.1.4 Lemma

Let (Ω, \mathcal{F}, P) be a probability space, $A, B_i \in \mathcal{F}$ $(i \in I, I \text{ at most countable})$ with $B_i \cap B_j \forall i, j \in I$ with $i \neq j$ and assume that $B := \bigcup_{i \in I} B_i$ satisfies P(B) > 0. If for every $i \in I$ with $P(B_i) > 0$ the probability $P(A|B_i)$ does not depend on i, i.e. $P(A|B_i) =: c$ for all $i \in I$ with $P(B_i) > 0$, then P(A|B) = c.

Proof.

We have

$$P(A \cap B) = P(A \cap \bigcup_{i \in I} B_i) = \sum_{i \in I} P(A \cap B_i)$$

= $\sum_{\substack{i \in I \\ P(B_i) > 0}} \underbrace{P(A|B_i)}_{=c} P(B_i) = c \sum_{\substack{i \in I \\ P(B_i) > 0}} P(B_i) = c P(B).$

Now divide by P(B) > 0.

2.1.5 Lemma

Let $(Z_n^{(l)})_{n \in \mathbb{N}_0}$, $l \in \mathbb{N}$, be independent GWPs, each distributed as $Z := (Z_n)_{n \in \mathbb{N}_0}$. Then, for any $k \in \mathbb{N}$, the process $\widetilde{Z} := (\widetilde{Z}_n)_{n \in \mathbb{N}_0}$, defined via $\widetilde{Z}_n := \sum_{l=1}^k Z_n^{(l)}$ for all $n \in \mathbb{N}_0$, is a HMC with the same transition probabilities as Z.

Proof.

Let $j, i_1, \ldots, i_k \in \mathbb{N}_0$ with $P(Z_n^{(1)} = i_1, \ldots, Z_n^{(k)} = i_k) > 0$. Define $i := i_1 + \cdots + i_k$. The conditional probability

$$P(\tilde{Z}_{n+1} = j \mid Z_n^{(1)} = i_1, \dots, Z_n^{(k)} = i_k)$$

$$= \sum_{\substack{j_1, \dots, j_k \in \mathbb{N}_0 \\ j_1 + \dots + j_k = j}} P(Z_{n+1}^{(1)} = j_1, \dots, Z_{n+1}^{(k)} = j_k \mid Z_n^{(1)} = i_1, \dots, Z_n^{(k)} = i_k)$$

$$= \sum_{\substack{j_1, \dots, j_k \in \mathbb{N}_0 \\ j_1 + \dots + j_k = j}} \prod_{l=1}^k P(Z_{n+1}^{(l)} = j_l \mid Z_n^{(l)} = i_l) = \sum_{\substack{j_1, \dots, j_k \in \mathbb{N}_0 \\ j_1 + \dots + j_k = j}} \prod_{l=1}^k p_{j_l}^{*i_l} = p_j^{*i}$$

only depends via $i = i_1 + \cdots + i_k$ on i_1, \ldots, i_k . Lemma 2.1.4. \Rightarrow

$$P(\widetilde{Z}_{n+1} = j \mid \widetilde{Z}_n = i) = P(\widetilde{Z}_{n+1} = j \mid \bigcup_{\substack{i_1, \dots, i_k \in \mathbb{N}_0 \\ i_1 + \dots + i_k = i}} \{Z_n^{(1)} = i_1, \dots, Z_n^{(k)} = i_k\})$$

= p_j^{*i} , $i, j \in \mathbb{N}_0$.

The calculation does not change, if the condition $\widetilde{Z}_n = i$ is replaced by $\widetilde{Z}_n = i, \widetilde{Z}_{n-1} = i_{n-1}, \ldots, \widetilde{Z}_0 = i_0. \Rightarrow \widetilde{Z}$ is a HMC with the same transition probabilities as Z.

In the following let $\mathbb{N}_0^{\infty} := \times_{i \in \mathbb{N}} \mathbb{N}_0$. For $i \in \mathbb{N}$ let $\pi_i : \mathbb{N}_0^{\infty} \to \mathbb{N}_0$ be the projection to the *i*-th component, i.e. $\pi_i(k) = k_i$ for all $k = (k_i)_{i \in \mathbb{N}} \in \mathbb{N}_0^{\infty}$. Furthermore, let \mathcal{G} denote the smallest σ -algebra in \mathbb{N}_0^{∞} such that all projections $\pi_i, i \in \mathbb{N}$, are measurable. \mathcal{G} is called the product- σ -algebra of \mathbb{N}_0^{∞} . It is easily seen that $\mathcal{G} = \mathcal{F}(\pi_i, i \in \mathbb{N}) = \mathcal{F}(\{\pi_i^{-1}(A_i) : i \in \mathbb{N}, A_i \subseteq \mathbb{N}_0\}).$

2.1.6 Theorem (Branching Property)

For $r \in \mathbb{N}_0$, $k \in \mathbb{N}$ and $A \in \mathcal{G}$,

$$P((Z_n)_{n>r} \in A \mid Z_r = k) = P((\widetilde{Z}_n)_{n \in \mathbb{N}} \in A), \qquad (*)$$

where $\widetilde{Z}_n := \sum_{j=1}^k Z_n^{(j)}$ and $(Z_n^{(j)})_{n \in \mathbb{N}_0}$, $j \in \{1, \ldots, k\}$, are independent *GWPs*, all distributed as $Z := (Z_n)_{n \in \mathbb{N}_0}$.

Proof.

For fixed $r \in \mathbb{N}_0$ and $k \in \mathbb{N}$ let \mathcal{D} be the set of all $A \in \mathcal{G}$ satisfying (*). It is easily seen that \mathcal{D} is a Dynkin system in \mathbb{N}_0^{∞} . Consider the system \mathcal{E} of all A of the form $A = A_1 \times \cdots \times A_m \times \mathbb{N}_0 \times \mathbb{N}_0 \times \cdots$ with $m \in \mathbb{N}$ and $A_1, \ldots, A_m \subseteq \mathbb{N}_0$. Obviously, \mathcal{E} is a \cap -stable generator of \mathcal{G} , i.e. $\mathcal{F}(\mathcal{E}) = \mathcal{G}$. If we can verify that $\mathcal{E} \subseteq \mathcal{D}$, then the statement follows, since then $\mathcal{G} = \mathcal{F}(\mathcal{E}) = \mathcal{D}(\mathcal{E}) \subseteq \mathcal{D}(\mathcal{D}) = \mathcal{D}$. It remains to verify that (*) holds for $A \in \mathcal{E}$. Each such A is a at most countable union of sets of the form

$$\{k_1\} \times \cdots \times \{k_m\} \times \mathbb{N}_0 \times \mathbb{N}_0 \times \cdots$$
 (**)

with $m \in \mathbb{N}$ and $k_1, \ldots, k_m \in \mathbb{N}_0$. Because of the σ -additivity of the two probability measures on the left-hand and right-hand side in (*) it suffices to verify (*) for sets of the form (**). In this case the left-hand side in (*) is equal to

$$P(Z_{r+1} = k_1, \dots, Z_{r+m} = k_m | Z_r = k)$$

= $\prod_{n=1}^m P(Z_{r+n} = k_n | Z_{r+n-1} = k_{n-1}) = \prod_{n=1}^m \pi_{k_{n-1}, k_n},$

where $k_0 := k$. The right-hand side in (*) is as well equal to

$$P(\widetilde{Z}_1 = k_1, \dots, \widetilde{Z}_m = k_m) = \prod_{n=1}^m P(\widetilde{Z}_n = k_n \,|\, \widetilde{Z}_{n-1} = k_{n-1}) = \prod_{n=1}^m \pi_{k_{n-1}, k_n},$$

since, by Lemma 2.1.5, \widetilde{Z} has the same transition probabilities as Z. **2.1.7 Corollary**

For $k, n \in \mathbb{N}_0$ and any function $h : \mathbb{N}_0 \to [0, \infty)$,

$$E(h(Z_{n+1}) | Z_1 = k) = E\left(h\left(\sum_{j=1}^k Z_n^{(j)}\right)\right),$$

where $(Z_n^{(j)})_{n \in \mathbb{N}_0}, j \in \mathbb{N}$, are independent copies of Z.

For k = 0 both sides are equal to h(0). Assume now that $k \in \mathbb{N}$. For $h = 1_B$ with $B \subseteq \mathbb{N}_0$ the statement follows from Theorem 2.1.6 (branching property) with the choice $A := \pi_n^{-1}(B) \in \mathcal{G}$. Thus, the statement holds for elementary functions. If $h : \mathbb{N}_0 \to [0, \infty)$ is arbitrary, then there exist elementary functions $0 \le h_1 \le h_2 \le \cdots$ with $\lim_{m\to\infty} h_m = h$. The statement then follows by two-times applying the theorem of monotone convergence.

In order to compute the mean and the variance of Z_n , the following lemma will be useful.

2.1.8 Lemma

Let X_1, X_2, \ldots be iid \mathbb{N}_0 -valued r.v. and let Y be a further \mathbb{N}_0 -valued r.v. being independent of $(X_n)_{n \in \mathbb{N}}$. If g denotes the probability generation function (pgf) of X_1 and h the pgf of Y, then $S := \sum_{j=1}^{Y} X_j$ has the pgf $h \circ g$ and $E(S) = E(Y)E(X_1) \in [0,\infty]$. If $E(S) < \infty$ then Var(S) = $Var(Y)(E(X_1))^2 + E(Y)Var(X_1)$.

Proof.

Let $s \in [0,1]$. For $k \in \mathbb{N}_0$, $\mathbb{E}(s^S | Y = k) = \mathbb{E}(s^{X_1 + \dots + X_k} | Y = k) = \mathbb{E}(s^{X_1} \cdots s^{X_k}) = (\mathbb{E}(s^{X_1}))^k = (g(s))^k$. Multiplication with P(Y = k) and summation over all $k \in \mathbb{N}_0$ yields

$$E(s^{S}) = \sum_{k=0}^{\infty} E(s^{S} | Y = k) P(Y = k) = \sum_{k=0}^{\infty} (g(s))^{k} P(Y = k) = h(g(s)).$$

Thus, S has the pgf $h \circ g$. It follows that $E(S) = (h \circ g)'(1) = h'(g(1))g'(1) = h'(1)g'(1) = E(Y)E(X_1)$ and

$$E(S(S-1)) = (h \circ g)''(1) = h''(g(1))(g'(1))^2 + h'(g(1))g''(1)$$

= $h''(1)(g'(1))^2 + h'(1)g''(1)$
= $E(Y(Y-1))(E(X_1))^2 + E(Y)E(X_1(X_1-1)).$

Assume now that $E(S) < \infty$. Summation of $E(S) - (E(S))^2 = E(Y)E(X_1) - (E(Y))^2(E(X_1))^2$ yields

$$Var(S) = E(Y(Y-1))(E(X_1))^2 + E(Y)E(X_1^2) - (E(Y))^2(E(X_1))^2$$

= $E(Y^2)(E(X_1))^2 + E(Y)(E(X_1^2) - (E(X_1))^2) - (E(Y))^2(E(X_1))^2$
= $Var(Y)(E(X_1))^2 + E(Y)Var(X_1).$

Now let f_n denote the pgf of Z_n , i.e.

$$f_n(s) := \mathcal{E}(s^{Z_n}) = \sum_{k=0}^{\infty} P(Z_n = k) s^k, \quad s \in [0, 1].$$

Define $f := f_1$, i.e. $f(s) = \sum_{k=0}^{\infty} p_k s^k$, $s \in [0, 1]$. Lemma 2.1.8 (applied with $Y := Z_{n-1}$ and $X_j := Y_{n-1,j}$) yields

$$f_n = f_{n-1} \circ f, \qquad n \in \mathbb{N},$$

and

$$\mathcal{E}(Z_n) = m \mathcal{E}(Z_{n-1}), \qquad n \in \mathbb{N},$$

where $m := f'(1) = \sum_{k=1}^{\infty} k p_k = E(Z_1)$ is the expected number of offspring of any individual. Moreover, for $m < \infty$, Lemma 2.1.8 yields

$$\operatorname{Var}(Z_n) = \sigma^2 \operatorname{E}(Z_{n-1}) + m^2 \operatorname{Var}(Z_{n-1}), \qquad n \in \mathbb{N},$$

where $\sigma^2 := \text{Var}(Z_1) = \sum_{k=1}^{\infty} k^2 p_k - m^2 = f''(1) + f'(1) - (f'(1))^2$ is the reproductive variance. In particular,

$$f_n = \underbrace{f \circ \cdots \circ f}_{n-\text{times}}$$

is the *n*-fold convolution of f and the mean of Z_n is $E(Z_n) = m^n$, $n \in \mathbb{N}_0$. Moreover, if $m < \infty$, an induction on n shows that the variance of Z_n is

$$\operatorname{Var}(Z_n) = \begin{cases} \frac{\sigma^2 m^{n-1} (m^n - 1)}{m - 1} & \text{if } m \neq 1, \\ n \sigma^2 & \text{if } m = 1. \end{cases}$$

2.2 Extinction probability

Given: GWP $Z = (Z_n)_{n \in \mathbb{N}_0}$ with $Z_0 = 1$ and offspring distribution $(p_k)_{k \in \mathbb{N}_0}$. Notation: $f_n := \text{pgf of } Z_n$.

Known:
$$f_n = \underbrace{f \circ \cdots \circ f}_{n-\text{times}}$$
, where $f(s) := \sum_{k=0}^{\infty} p_k s^k$, $s \in [0, 1]$
$$m := \operatorname{E}(Z_1) = f'(1-) = \sum_{k=1}^{\infty} k p_k \in [0, \infty]$$

2.2.1 Def. (Extinction Probability) The event

$$Q := \{Z_n = 0 \text{ eventually}\} := \liminf_{n \to \infty} \{Z_n = 0\} := \bigcup_{n \in \mathbb{N}} \bigcap_{m=n}^{\infty} \{Z_m = 0\}$$

is called the <u>extinction event</u> and

$$q := P(Q) = P(Z_n = 0 \text{ eventually}) = \lim_{n \to \infty} P(Z_n = 0) = \lim_{n \to \infty} f_n(0)$$

the extinction probability of Z.

2.2.2 Theorem (Fixed Point Theorem)

The fixed point equation f(s) = s has exactly one solution in [0, 1) if m > 1and no solution in [0, 1) if $m \leq 1$ and $p_1 < 1$. The extinction probability q is the smallest fixed point of f in the interval [0, 1].

Proof.

We exclude the trivial case $p_1 = 1$. From $f_n(0) \to q$ and the continuity of f it follows that

$$f(q) \leftarrow f(f_n(0)) = f_{n+1}(0) \rightarrow q.$$

Thus, f(q) = q. Now let $a \in [0, 1]$ be arbitrary with f(a) = a. By induction on $n \in \mathbb{N}$ it follows that $f_n(0) \leq a$: For n = 1 this is clear, since f is nondecreasing and hence $f_1(0) = f(0) \leq f(a)$. The induction step from n to n+1 reads $f_{n+1}(0) = f(f_n(0)) \leq f(a) = a$. Letting $n \to \infty$ yields $q \leq a$, i.e. q is the smallest solution of the equation f(s) = s in [0, 1].

Define $\varphi(s) := f(s) - s, s \in [0, 1].$

Assume first that $m \leq 1$ and $p_1 < 1$. Then, for all $s \in [0, 1)$,

$$\varphi'(s) = f'(s) - 1 < f'(1) - 1 \leq 0,$$

i.e. φ is strictly decreasing. In particular, $\varphi(s) > \varphi(1) = 0$, so f(s) > s for all $s \in [0, 1)$. Therefore, the equation f(s) = s has no solution in [0, 1). Assume now that m > 1. Then,

$$\frac{1-f(s)}{1-s} \to f'(1) = m > 1, \qquad s \to 1.$$

Thus, 1 - f(s) > 1 - s, so $\varphi(s) < 0$ for all s in a left neighborhood of 1. On the other hand, $\varphi(0) = f(0) \ge 0$. Thus, by the intermediate value theorem, there exists $s \in [0,1)$ with $\varphi(s) = 0$, i.e. f(s) = s. To see that there is only one such s, assume that there exist $0 \le s_1 < s_2 < 1$ with $f(s_1) = s_1$ and $f(s_2) = s_2$. Then, $\varphi(s_1) = \varphi(s_2) = 0 = \varphi(1)$. Thus, by the theorem of Rolle, there exist a, b with $s_1 < a < s_2 < b < 1$ and $\varphi'(a) = \varphi'(b) = 0$, i.e. f'(a) = f'(b), in contradiction to the fact that f' is strictly increasing¹ if m > 1. Thus, the assumption is wrong, so there exists exactly one $s \in [0, 1)$ with f(s) = s.

2.2.3 Theorem

If $p_1 < 1$ then $P(Z_n \to 0) + P(Z_n \to \infty) = 1$.

¹Since m > 1 there exists $k_0 \in \{2, 3, ...\}$ with $p_{k_0} > 0$. For all $s \in (0, 1)$ it follows that $f''(s) = \sum_{k=2}^{\infty} k(k-1)p_k s^{k-2} \ge k_0(k_0-1)p_{k_0} s^{k_0-1} > 0$. Hence, f' is strictly increasing.

For q = 1 there is nothing to show. Thus, let q < 1. Then, by Theorem 2.2.2, m > 1 and f' is strictly increasing.

Assume that $f'(q) \ge 1$. Then, for all $s \in (q, 1)$, $f'(s) > f'(q) \ge 1$, and hence $f(1) - q = f(1) - f(q) = \int_q^1 f'(s) ds > \int_q^1 1 ds = 1 - q$, so f(1) > 1, an obvious contradiction. Thus, f'(q) < 1.

Induction yields

$$f'_n(q) = (f'(q))^n, \qquad n \in \mathbb{N}.$$

For n = 1 this is clear, since $f_1 = f$. The step from n to n+1 reads $f'_{n+1}(q) = (f_n \circ f)'(q) = f'_n(f(q))f'(q) = f'_n(q)f'(q) \stackrel{IV}{=} (f'(q))^n f'(q) = (f'(q))^{n+1}$.

<u>Case 1:</u> Let $q \in (0, 1)$. Then, for all $k, n \in \mathbb{N}$,

$$P(1 \le Z_n \le k) = \sum_{j=1}^k P(Z_n = j) \le \sum_{j=1}^k P(Z_n = j) \frac{jq^{j-1}}{q^k} \le \frac{f'_n(q)}{q^k} = \frac{(f'(q))^n}{q^k}$$

$$\Rightarrow \sum_{n=1}^\infty P(1 \le Z_n \le k) < \infty.$$

Borel–Cantelli lemma. $\Rightarrow P(1 \leq Z_n \leq k \infty$ -often) = 0, and the assertion follows for q > 0.

<u>Case 2:</u> Assume now that q = 0. Then, $p_0 = f(0) = f(q) = q = 0$ and hence $Z_1 \leq Z_2 \leq \cdots$ almost surely. For each $n \in \mathbb{N}$ it follows that

$$P\left(\bigcap_{m=n}^{\infty} \{Z_m = Z_{m+1}\}\right) = \lim_{N \to \infty} P\left(\bigcap_{m=n}^{n+N-1} \{Z_m = Z_{m+1}\}\right)$$
$$= \lim_{N \to \infty} \sum_{k=0}^{\infty} P(k = Z_n = Z_{n+1} = \dots = Z_{n+N})$$
$$= \lim_{N \to \infty} \sum_{k=0}^{\infty} P(Z_n = k) \underbrace{p_1^k \cdots p_1^k}_{N-\text{times}} \quad (\text{since } Z_1 \le Z_2 \le \dots \text{ a.s.})$$
$$= \lim_{N \to \infty} \sum_{k=0}^{\infty} P(Z_n = k) (p_1^N)^k = \lim_{N \to \infty} f_n(p_1^N) \stackrel{p_1 \le 1}{=} f_n(0).$$

Thus,

$$P(Z_n = Z_{n+1} \text{ eventually}) = P\left(\bigcup_{n \in \mathbb{N}} \bigcap_{m=n}^{\infty} \{Z_{m+1} = Z_m\}\right)$$
$$= \lim_{n \to \infty} P\left(\bigcap_{m=n}^{\infty} \{Z_m = Z_{m+1}\}\right) = \lim_{n \to \infty} f_n(0) = q = 0,$$

i.e. $P(Z_n \to \infty) = P(Z_n < Z_{n+1} \text{ ∞-often$}) = 1 - P(Z_n = Z_{n+1} \text{ eventually}) = 1.$

2.2.4 Def.

A GWP Z is called <u>subcritical</u> if m < 1, <u>critical</u> if m = 1 and <u>supercritical</u> if m > 1.

2.3 Critical case

Given: GWP $Z = (Z_n)_{n \in \mathbb{N}_0}$ with $Z_0 = 1$ It is assumed that m = 1 and $p_1 < 1$. Known:

- $q := P(Z_n \to 0) = 1$
- $E(Z_n) = m^n = 1$ for all $n \in \mathbb{N}_0$
- $\operatorname{Var}(Z_n) = n\sigma^2 \to \infty$ Note that $p_1 < 1$ is equivalent to $\sigma^2 := \operatorname{Var}(Z_1) > 0$.

2.3.1 Lemma (Basic Lemma)

If m = 1 and $\sigma^2 \in (0, \infty)$ then

$$\lim_{n \to \infty} \frac{1}{n} \left(\frac{1}{1 - f_n(s)} - \frac{1}{1 - s} \right) = \frac{\sigma^2}{2}$$

uniformly for $s \in [0, 1)$.

2.3.2 Theorem (Yaglom Limit)

Let m = 1 and $\sigma^2 \in (0, \infty)$. Then

- (a) $\lim_{n \to \infty} nP(Z_n > 0) = \frac{2}{\sigma^2}$, (Kolmogorov, 1938)
- (b) $\lim_{n \to \infty} \mathbb{E}\left(\frac{Z_n}{n} \mid Z_n > 0\right) = \frac{\sigma^2}{2}$, and
- (c) Exponential limit law:

$$\lim_{n \to \infty} P\left(\frac{Z_n}{n} \le u \, \middle| \, Z_n > 0\right) = 1 - e^{-2u/\sigma^2}, \, u \ge 0.$$
 (Yaglom, 1947)

Rem.

Conditional on $Z_n > 0$, the r.v. Z_n/n converges in distribution to an exponential distribution with parameter $2/\sigma^2$.

(of Lemma 2.3.1) Let $s \in [0, 1)$.

Taylor expansion in 1: $f(s) = s + \frac{\sigma^2}{2}(1-s)^2 + r(s)(1-s)^2$ for a continuous function r with $\lim_{s\uparrow 1} r(s) = 0$. \Rightarrow

$$\frac{1}{1-f(s)} - \frac{1}{1-s} = \frac{f(s) - s}{(1-f(s))(1-s)} = \frac{\frac{\sigma^2}{2}(1-s)^2 + r(s)(1-s)^2}{(1-f(s))(1-s)}$$
$$= \frac{1-s}{1-f(s)} \left(\frac{\sigma^2}{2} + r(s)\right) = \frac{\sigma^2}{2} + \rho(s),$$

where again ρ is continuous with $\lim_{s\uparrow 1} \rho(s) = 0$. Iteration yields

$$\frac{1}{n} \left(\frac{1}{1 - f_n(s)} - \frac{1}{1 - s} \right) = \frac{1}{n} \sum_{j=0}^{n-1} \left(\frac{1}{1 - f(f_j(s))} - \frac{1}{1 - f_j(s)} \right)$$
$$= \frac{\sigma^2}{2} + \frac{1}{n} \sum_{j=0}^{n-1} \rho(f_j(s)).$$

The convergence $f_n(s) \to 1$ is uniform in $s \in [0, 1)$, since $f_n(0) \leq f_n(s) \leq 1$ and $f_n(0) \to 1$. The result follows since ρ is bounded. \Box

Proof.

(of Theorem 2.3.2)

(a)
$$nP(Z_n > 0) = n(1 - f_n(0)) = \left(\frac{1}{n}\left(\frac{1}{1 - f_n(0)} - 1\right) + \frac{1}{n}\right)^{-1} \to \frac{2}{\sigma^2}$$
 by
Lemma 2.3.1 (applied with $s = 0$).
(b) $E\left(\frac{Z_n}{n} \mid Z_n > 0\right) = \frac{E(Z_n)}{n(1 - f_n(0))} = \frac{1}{nP(Z_n > 0)} \stackrel{(a)}{\to} \frac{\sigma^2}{2}$.
(c) Let $u > 0$. Define $\beta := 2/\sigma^2$.
 $E(e^{-uZ_n/n} \mid Z_n > 0) = \frac{f_n(e^{-u/n}) - f_n(0)}{1 - f_n(0)} = 1 - \frac{1 - f_n(e^{-u/n})}{1 - f_n(0)}$
 $= 1 - \frac{1}{nP(Z_n > 0)} \left(\frac{1}{n}\left(\frac{1}{1 - f_n(e^{-u/n})} - \frac{1}{1 - e^{-u/n}}\right) + \frac{1}{n(1 - e^{-u/n})}\right)^{-1}$
converges by (a) and Lemma 2.3.1 to

converges by (a) and Lemma 2.3.1 to 1 < 1 > -1 1 $\beta_{ac} = \beta$

$$1 - \frac{1}{\beta} \left(\frac{1}{\beta} + \frac{1}{u} \right)^{-1} = 1 - \frac{1}{\beta} \frac{\beta u}{\beta + u} = \frac{\beta}{\beta + u}$$

where the uniform convergence in Lemma 2.3.1 is essential here.

The map $u \mapsto \frac{\beta}{\beta+u}$ is the Laplace transform (LT) of $\text{Exp}(\beta)$. By the continuity theorem for LT the pointwise convergence of the LTs implies the convergence in distribution.

2.4 Subcritical case

Given: GWP $Z = (Z_n)_{n \in \mathbb{N}_0}$ with $Z_0 = 1$ and $m := \mathbb{E}(Z_1) < \infty$

Taylor expansion of the pgf f of Z_1 at 1:

$$f(s) = 1 - m(1 - s) + r(s)(1 - s), \qquad s \in [0, 1].$$

2.4.1 Lemma (Comparison Lemma) For all $\delta \in (0, 1)$,

$$\sum_{k=1}^{\infty} r(1-\delta^k) < \infty. \quad \Longleftrightarrow \quad \sum_{k=1}^{\infty} p_k k \log k < \infty.$$

Rem.

The condition on the right-hand side is equivalent to $E(Z_1 \log Z_1) < \infty$.

2.4.2 Theorem (Kolmogorov, 1938)

If $p_0 < 1$ and m < 1 then the limit

$$\varphi(0) := \lim_{n \to \infty} \frac{P(Z_n > 0)}{m^n}$$

exists with $\varphi(0) = 0$ if $E(Z_1 \log Z_1) = \infty$ and $\varphi(0) > 0$ otherwise.

Rem.

The theorem thus states that $P(Z_n > 0)$ behaves (up to a multiplicative constant) as m^n provided that $E(Z_1 \log Z_1) < \infty$.

The following result shows convergence conditional on non-extinction.

2.4.3 Theorem (Convergence for subcritical GWPs, Yaglom, 1947) If $p_0 < 1$ and m < 1 then for each $k \in \mathbb{N}$ the limit

$$b_k := \lim_{n \to \infty} P(Z_n = k \mid Z_n > 0)$$

exists and $\sum_{k=1}^{\infty} b_k = 1$, i.e. $(b_k)_{k \in \mathbb{N}}$ defines a distribution on \mathbb{N} . The mean of this distribution is finite if and only if $\mathbb{E}(Z_1 \log Z_1) < \infty$ and in this case

$$\sum_{k=1}^{\infty} k b_k = \frac{1}{\varphi(0)}.$$

The pgf $g(s) := \sum_{k=1}^{\infty} b_k s^k$, $s \in [0, 1]$, is a solution to the equation

$$g(f(s)) = 1 - m(1 - g(s)), \quad s \in [0, 1].$$

(of Lemma 2.4.1) For all $s \in [0, 1)$,

$$\begin{aligned} r(s) &= m - \frac{1 - f(s)}{1 - s} = m - \sum_{j \ge 0} s^j \left(1 - \sum_{k \ge 0} p_k s^k \right) \\ &= m - \sum_{j \ge 0} s^j + \sum_{k \ge 0} p_k \sum_{j \ge 0} s^{j+k} = m - \sum_{n \ge 0} s^n + \sum_{k \ge 0} p_k \sum_{n \ge k} s^n \\ &= m - \sum_{n \ge 0} s^n + \sum_{n \ge 0} \left(\sum_{k=0}^n p_k \right) s^n = m - \sum_{n \ge 0} a_n s^n, \end{aligned}$$

where $a_n := 1 - \sum_{k=0}^n p_k = \sum_{k>n} p_k$, $n \in \mathbb{N}_0$. Note that r(1) = 0 and, hence, $\sum_{n\geq 0} a_n = m$. In particular, r is a nonnegative nonincreasing function on [0, 1]. Define $\alpha := -\log \delta$. r nonincreasing. \Rightarrow For $j \in \mathbb{N}$

$$r(1-\delta) + \int_{1}^{j} r(1-e^{-\alpha x}) \, \mathrm{d}x \ge \sum_{k=1}^{j} r(1-\delta^{k})$$

$$\ge \int_{1}^{j} r(1-e^{-\alpha x}) \, \mathrm{d}x = \frac{1}{\alpha} \int_{1-\delta}^{1-\delta^{j}} \frac{r(s)}{1-s} \, \mathrm{d}s,$$

where the last equality follows from the substitution $s := 1 - e^{-\alpha x}$. Thus,

$$\sum_{k \ge 1} r(1 - \delta^k) < \infty \quad \Longleftrightarrow \quad \int_0^1 \frac{r(s)}{1 - s} \, \mathrm{d}s < \infty$$

But, for all $s \in [0, 1)$,

$$\frac{r(s)}{1-s} = \sum_{j\geq 0} s^{j} \left(m - \sum_{n\geq 0} a_{n} s^{n} \right) = m \sum_{j\geq 0} s^{j} - \sum_{n\geq 0} a_{n} \sum_{j\geq 0} s^{j+n}$$
$$= m \sum_{k\geq 0} s^{k} - \sum_{n\geq 0} a_{n} \sum_{k\geq n} s^{k} = m \sum_{k\geq 0} s^{k} - \sum_{k\geq 0} \left(\sum_{n=0}^{k} a_{n} \right) s^{k}$$
$$= \sum_{k\geq 0} \left(m - \sum_{n=0}^{k} a_{n} \right) s^{k} = \sum_{k\geq 0} \left(\sum_{n>k} a_{n} \right) s^{k}.$$

Integration yields

$$\int_0^1 \frac{r(s)}{1-s} \, \mathrm{d}s = \int_0^1 \sum_{k\ge 0} \left(\sum_{n>k} a_n\right) s^k \, \mathrm{d}s = \sum_{k\ge 0} \sum_{n>k} \frac{a_n}{k+1} = \sum_{n\ge 1} a_n \sum_{k=0}^{n-1} \frac{1}{k+1}.$$

Since $\sum_{k=0}^{n-1} \frac{1}{k+1} \sim \log n$ as $n \to \infty$, this series converges if and only if the series $\sum_{n\geq 1} a_n \log n$ converges. Now,

$$\sum_{n \ge 1} a_n \log n = \sum_{n \ge 1} \left(\sum_{k > n} p_k \right) \log n = \sum_{k \ge 2} p_k \sum_{n=1}^{k-1} \log n.$$

2BRANCHING PROCESSES

Since $\sum_{n=1}^{k-1} \log n \sim \int_1^k \log x \, dx = [x \log x - x]_1^k \sim k \log k$ as $k \to \infty$, this series converges if and only if $\sum_{k>1} p_k k \log k < \infty$.

Proof.

(of Theorem 2.4.2) We have $\frac{1-f(s)}{1-s} = m-r(s)$. Replacing s by $f_k(s)$ yields

$$\frac{1 - f_{k+1}(s)}{1 - f_k(s)} = m \left(1 - \frac{r(f_k(s))}{m} \right)$$

and hence (taking products) $\frac{1-f_n(s)}{1-s} = m^n \prod_{k=0}^{n-1} \left(1 - \frac{r(f_k(s))}{m}\right).$

 $0 \leq r/m \leq 1. \Rightarrow m^{-n}(1 - f_n(s))/(1 - s)$ is nonincreasing in n and hence converges to a limit $\varphi(s) \geq 0$. In particular (choose s = 0) $P(Z_n > 0) =$ $1 - f_n(0) \sim m^n \varphi(0)$. The well-known relation between convergence of sums and products shows that $\varphi(0) > 0$ if and only if $\sum_{k \ge 1} r(f_k(0)) < \infty$. Now, $1 - f(s) \le m(1 - s)$ and, by induction, $1 - f_k(s) \le m^k(1 - s)$ for all $k \in \mathbb{N}$. Similarly it follows that $1 - f_k(s) \ge (f'(s_0))^k (1-s)$ for $s \ge s_0$ and with $s_0 = p_0 > 0$ it follows with the notation $a := f'(p_0) > 0$ that

$$1 - m^k \leq f_k(0) = f_{k-1}(p_0) \leq 1 - a^{k-1}(1 - p_0) \leq 1 - b^k,$$

where $b := a \wedge (1 - p_0)$. From Lemma 2.4.1 it follows that

$$\sum_{k\geq 1} r(f_k(0)) < \infty \quad \Longleftrightarrow \quad \sum_{k\geq 1} p_k k \log k < \infty. \qquad \Box$$

Proof.

(of Theorem 2.4.3) Define

$$g_n(s) := E(s^{Z_n} | Z_n > 0) = \frac{f_n(s) - f_n(0)}{1 - f_n(0)} = 1 - \frac{1 - f_n(s)}{1 - f_n(0)}$$
$$= 1 - (1 - s) \prod_{k=0}^{n-1} \frac{m - r(f_k(s))}{m - r(f_k(0))}.$$

We have $f_k(s) \ge f_k(0)$ and r is nonincreasing. \Rightarrow The fraction in the product is greater than or equal to 1. Thus, $g_n(s)$ is nonincreasing in n and, hence, converges to some g(s). Obviously, $g_n(0) = 0$ and $g_n(1) = 1$ and, hence, g(0) = 0 and g(1) = 1. In order to verify that g is continuous at 1, it suffices (by the monotonicity of q and since $f_k(0) \to q = 1$) to verify that $\lim_{k\to\infty} g(f_k(0)) = 1$. We have

$$g_n(f_k(0)) = 1 - \frac{1 - f_n(f_k(0))}{1 - f_n(0)} = 1 - \frac{1 - f_k(f_n(0))}{1 - f_n(0)} \to 1 - m^k, \quad n \to \infty.$$

2 BRANCHING PROCESSES

Thus, $g(f_k(0)) = 1 - m^k$ and hence $\lim_{k\to\infty} g(f_k(0)) = \lim_{k\to\infty} (1 - m^k) = 1$. Therefore, g(1-) = 1, so g is continuous at 1. By the continuity theorem for pgf's, all the limits

$$b_k := \lim_{n \to \infty} P(Z_n = k \mid Z_n > 0), \qquad k \in \mathbb{N},$$

exist and g is as well a pgf of the form $g(s) = \sum_{k \ge 1} b_k s^k$. It follows that

$$\sum_{k \ge 1} kb_k = g'(1-) = \lim_{k \to \infty} \frac{1 - g(f_k(0))}{1 - f_k(0)} = \lim_{k \to \infty} \frac{m^k}{1 - f_k(0)} \stackrel{\text{Thm. 2.4.2}}{=} \frac{1}{\varphi(0)}$$

and $g_n \circ f = 1 - \frac{1 - f_{n+1}}{1 - f_n(0)} = 1 - \frac{1 - f_{n+1}}{1 - f_{n+1}(0)} \frac{1 - f(f_n(0))}{1 - f_n(0)}$. Letting $n \to \infty$ yields $g \circ f = 1 - (1 - g)m$.

2.5 Supercritical case

Given. $(Z_n)_{n \in \mathbb{N}_0}$ GWP with reproduction r.v. Z_1 , where $m := \mathrm{E}(Z_1) \in (1, \infty)$ and $\sigma^2 := \mathrm{Var}(Z_1) \in (0, \infty]$. $q := P(Z_n \to 0)$ (extinction probability)

2.5.1 Theorem (Convergence Theorem for Supercritical GWPs) Under the above assumptions there exist positive numbers k_1, k_2, \ldots such that $W_n := k_n Z_n$ converges as $n \to \infty$ almost surely to a non-degenerate nonnegative real r.v. W. Moreover, P(W = 0) = q.

If $a \in [0, 1/m)$ then $a^n Z_n \to 0$ a.s.. If $a \in (1/m, \infty)$ then $a^n Z_n \to Z_\infty$ a.s., where $Z_\infty(\omega) := 0$ for $\omega \in \{Z_n \to 0\}$ and $Z_\infty(\omega) := \infty$ for $\omega \in \{Z_n \to \infty\}$. If $E(Z_1 \log Z_1) < \infty$ then one can choose $k_n := m^{-n}$.

If $E(Z_1 \log Z_1) = \infty$ then $m^{-n}Z_n \to 0$ a.s. as $n \to \infty$.

Rem.

The numbers k_n , $n \in \mathbb{N}$, are called <u>Seneta constants</u> (Seneta, 1968). In particular, for $E(Z_1 \log Z_1) < \infty$ and $k_n = m^{-n}$, one speaks of the <u>Theorem of Kesten and Stigum</u> (1966). Heyde (1970) has also provided important contributions to the convergence properties of supercritical GWPs.

2.5.2 Theorem (Characterization of the limit W)

The LT ψ of W is a solution to the equation

$$\psi(mu) = (f \circ \psi)(u), \quad u \ge 0.$$

The mean $E(W) = -\psi'(0)$ is finite if and only if $E(Z_1 \log Z_1) < \infty$ and in this case there exists exactly one solution ψ of the above equation, which satisfies $\psi(0) = 1$ and whose derivative at 0 exists and is equal to a given value.

Recapitulation.

 $p_k := P(Z_1 = k), \ k \in \mathbb{N}_0.$ pgf f of $Z_1, \ f(s) := \mathbb{E}(s^{Z_1}) = \sum_{k=0}^{\infty} p_k s^k, \ s \in [0, 1].$ Extinction probability $q := \lim_{n \to \infty} P(Z_n = 0) < 1.$ q = smallest fixed point of f in the interval [0, 1].

Proof.

(of Theorem 2.5.1) f strictly increasing. $\Rightarrow g := f^{-1}$ exists. Define $g_0 := \text{id}, g_n := \underbrace{g \circ \cdots \circ g}_{n-\text{times}}, n \in \mathbb{N}.$

g is non-decreasing, concave, differentiable and maps [q, 1] to [q, 1]. Define $X_n(s) := (g_n(s))^{Z_n}$ and $\mathcal{F}_n := \mathcal{F}(Z_1, \ldots, Z_n), s \in [q, 1], n \in \mathbb{N}_0$. $X_n(s)$ is \mathcal{F}_n -measurable. Moreover, for $k \in \mathbb{N}_0$,

$$E(X_{n+1}(s) | Z_n = k) = E((g_{n+1}(s))^{Z_{n+1}} | Z_n = k)$$

$$= E((g_{n+1}(s))^{Y_{n1}+\dots+Y_{nk}} | Z_n = k)$$

$$= E((g_{n+1}(s))^{Y_{n1}+\dots+Y_{nk}})$$

$$= E((g_{n+1}(s))^{Y_{n1}}) \cdots E((g_{n+1}(s))^{Y_{nk}})$$

$$= (f(g_{n+1}(s)))^k = (g_n(s))^k.$$

 $\Rightarrow \operatorname{E}(X_{n+1}(s) \mid Z_n) = (g_n(s))^{Z_n} = X_n(s) \text{ a.s.}$ $\Rightarrow \operatorname{E}(X_{n+1}(s) \mid \mathcal{F}_n) = X_n(s) \text{ a.s.}$

 $\Rightarrow (X_n(s))_{n \in \mathbb{N}_0} \text{ is a nonnegative martingale w.r.t. } F := (\mathcal{F}_n)_{n \in \mathbb{N}_0}.$ $\Rightarrow X_{\infty}(s) := \lim_{n \to \infty} X_n(s) \text{ exists a.s. (martingale convergence theorem)}$ Clear: $0 \le X_{\infty}(s) \le 1$, since $0 \le X_n(s) \le 1 \forall n \in \mathbb{N}_0.$ dominated convergence. $\Rightarrow E(X_{\infty}(s)) = E(X_1(s)) = E(X_0(s)) = s$ a.s. $E(X_{n+1}^2(s) \mid \mathcal{F}_n) \ge (E(X_{n+1}(s) \mid \mathcal{F}_n))^2 = X_n^2(s)$ a.s. $\Rightarrow (X_n^2(s))_{n \in \mathbb{N}_0}$ submartingale w.r.t. F (again with values in [0, 1]). $\Rightarrow E(X_{\infty}^2(s)) \ge E(X_1^2(s)) > (E(X_1(s)))^2$, since Z_1 is non-degenerate. $\Rightarrow \operatorname{Var}(X_{\infty}(s)) \ge \operatorname{Var}(X_1(s)) > 0.$ Define $c_n(s) := -\log g_n(s), Y(s) := -\log X_{\infty}(s).$ $\Rightarrow \boxed{c_n(s)Z_n \stackrel{a.s.}{\rightarrow} Y(s)}$ and Y(s) is non-degenerate, which proves the first part of Theorem 2.5.1, except that it remains to verify that Y(s) is a.s. finite. $f(s) \leq s$ for $s \in [q, 1]. \Rightarrow g(s) \geq s$ for $s \in [q, 1]. \Rightarrow g_n \nearrow g_{\infty}$ for some g_{∞} . $s = f_n(g_n(s)) \leq f_n(g_{\infty}(s)) \rightarrow q$, if $g_{\infty}(s) < 1. \Rightarrow g_{\infty}(s) = 1$ for s > q. Taylor expansion of f around 1 (as in the critical case). $\Rightarrow 1 - f(s) = (m - r(s))(1 - s).$

Replacing $s \in (q, 1)$ by g(s) yields

$$\frac{1-g(s)}{1-s} = \frac{1}{m-r(g(s))} = \frac{1}{m} \frac{1}{1-\frac{r(g(s))}{m}}$$

Repeating this and taking products. \Rightarrow

$$m^{n}(1 - g_{n}(s)) = \frac{1 - s}{\prod_{k=1}^{n} \left(1 - \frac{r(g_{k}(s))}{m}\right)}.$$
 (*)

This tells us something on $c_n(s)$, since $-\log x \sim 1 - x$ for $x \to 1$. In particular

$$\frac{c_n(s)}{c_{n-1}(s)} \sim \frac{1 - g_n(s)}{1 - g_{n-1}(s)} = \frac{1}{m} \frac{m^n (1 - g_n(s))}{m^{n-1} (1 - g_{n-1}(s))} = \frac{1}{m} \frac{1}{1 - \frac{r(g_n(s))}{m}} \sim \frac{1}{m},$$

since $g_n(s) \to g_{\infty}(s) = 1$ and r(1-) = 0. Now use this to verify that $Y(s) := \lim_{n \to \infty} c_n(s)Z_n$ is a.s. finite.

Again, we have, with the notation $P(A | Z_1) := E(1_A | Z_1) := E(1_A | \mathcal{F}(Z_1))$

$$\begin{split} P(Y(s) < \infty) &= \operatorname{E}(P(Y(s) < \infty \mid Z_1)) \\ &= \operatorname{E}\left(P\left(\lim_{n \to \infty} c_n(s)Z_n < \infty \mid Z_1\right)\right) \\ \stackrel{(+)}{=} \operatorname{E}\left(\left(P\left(\lim_{n \to \infty} c_n(s)Z_{n-1} < \infty\right)\right)^{Z_1}\right) \quad ((+) \text{ follows from the branching property, see Appendix 1}) \\ &= \operatorname{E}\left(\left(P\left(\lim_{n \to \infty} \frac{c_n(s)}{c_{n-1}(s)}c_{n-1}(s)Z_{n-1} < \infty\right)\right)^{Z_1}\right) \\ &= \operatorname{E}\left(\left(P\left(\frac{Y(s)}{m} < \infty\right)\right)^{Z_1}\right) \\ &= \operatorname{E}\left((P(Y(s) < \infty))^{Z_1}\right) = f(P(Y(s) < \infty)). \end{split}$$

Analogous: P(Y(s) = 0) = f(P(Y(s) = 0)).

2 BRANCHING PROCESSES

⇒ The probabilities $P(Y(s) < \infty)$ and P(Y(s) = 0) are both fixed points of f and can hence only be equal to q or to 1. Y(s) is non-degenerate. ⇒ P(Y(s) = 0) = q.

$$s = \operatorname{E}(X_{\infty}(s)) = \operatorname{E}(e^{-Y(s)}) \leq P(Y(s) < \infty)$$

 $\Rightarrow P(Y(s) < \infty) = 1$ for s > q. We have

$$m^n c_n(s) \not\to \infty \iff \prod_{n=1}^{\infty} \left(1 - \frac{r(g_n(s))}{m} \right) > 0 \iff \sum_{n=1}^{\infty} r(g_n(s)) < \infty.$$

Choose $s_0 \in (q, 1)$ such that $m_0 := f'(s_0) > 1$ and k such that $g_k(s) \ge s_0$. Since

$$m_0^n(1-s) \le 1 - f_n(s) \le m^n(1-s) \ \forall \ s \in [s_0, 1],$$

it follows that

$$1 - m_0^{-(n-k)}(1 - g_k(s)) \le g_n(s) \le 1 - m^{-n}(1 - s).$$

By the comparison lemma,

$$\lim_{n \to \infty} m^n c_n(s) < \infty. \iff \mathcal{E}(Z_1 \log Z_1) < \infty. \quad (**)$$

If $E(Z_1 \log Z_1) < \infty$, then we can hence choose $k_n := m^{-n}$, since then $k_n Z_n = \frac{c_n(s)Z_n}{m^n c_n(s)}$ converges a.s..

If $E(Z_1 \log Z_1) = \infty$, then $m^{-n}Z_n = \frac{c_n(s)Z_n}{m^n c_n(s)} \to 0$ a.s.. If a < 1/m, then always $a^n Z_n = \frac{(am)^n}{m^n c_n(s)} c_n(s) Z_n \to 0$ a.s.. Assume now that $a \in (1/m, \infty)$. Then,

$$\frac{c_n(s)}{a^n} \sim \frac{1 - g_n(s)}{a^n} \stackrel{(*)}{=} \frac{1 - s}{\prod_{k=1}^n a(m - r(g_k(s)))}$$

and this expression has to converge to 0 for $s \in (q, 1)$, since

$$1 = m - r(q) \leq m - r(g_k(s)) \rightarrow m.$$

Therefore,

$$a^n Z_n = \frac{a^n}{c_n(s)} c_n(s) Z_n \rightarrow \begin{cases} 0 & \text{if } Z_n \to 0, \\ \infty & \text{if } Z_n \to \infty. \end{cases}$$

Appendix 1 to (+): We have

$$\{\lim_{n \to \infty} c_n(s) Z_n < \infty\} = \{ (Z_n)_{n > 1} \in A_s \},\$$

where

 $A_s := \{a = (a_n)_{n>1} \in \mathbb{N}_0^{\infty} \mid \text{The sequence } (c_n(s)a_n)_{n>1} \text{ converges in } \mathbb{R} \}.$

For n > 1 let $\pi_n : \mathbb{N}_0^{\infty} \to \mathbb{N}_0$ denote the projection to the *n*-th component, i.e. $\pi_n(a) = a_n$ for all n > 1 and $a = (a_n)_{n>1} \in \mathbb{N}_0^{\infty}$. Further, let $\mathcal{G} := \mathcal{F}(\pi_n, n > 1)$ denote the product- σ -algebra. Then,

$$A_{s} = \{a = (a_{n})_{n>1} \in \mathbb{N}_{0}^{\infty} \mid (c_{n}(s)a_{n})_{n>1} \text{ is a Cauchy-sequence in } \mathbb{R} \}$$

$$= \bigcap_{N \in \mathbb{N}} \bigcup_{n_{0} \in \mathbb{N}} \bigcap_{i,j>n_{0}} \{a = (a_{n})_{n>1} \in \mathbb{N}_{0}^{\infty} \mid |c_{i}(s)\pi_{i}(a) - c_{j}(s)\pi_{j}(a)| < \frac{1}{N} \}$$

$$= \bigcap_{N \in \mathbb{N}} \bigcup_{n_{0} \in \mathbb{N}} \bigcap_{i,j>n_{0}} (c_{i}(s)\pi_{i} - c_{j}(s)\pi_{j})^{-1}((-\frac{1}{N}, \frac{1}{N})) \in \mathcal{G},$$

since, with π_i and π_j , also the map $c_i(s)\pi_i - c_j(s)\pi_j : \mathbb{N}_0^{\infty} \to \mathbb{R}$ is \mathcal{G} - \mathcal{B} -measurable.

Now, let $k \in \mathbb{N}_0$ and let $(Z_n^{(j)})_{n \in \mathbb{N}_0}$, $j \in \{1, \ldots, k\}$, be independent GWPs, each distributed as $(Z_n)_{n \in \mathbb{N}_0}$. Define $\widetilde{Z}_n := \sum_{j=1}^k Z_n^{(j)}$. Then,

$$P(\lim_{n \to \infty} c_n(s)Z_n < \infty \mid Z_1 = k) = P((Z_n)_{n>1} \in A_s \mid Z_1 = k)$$

= $P((\widetilde{Z}_n)_{n \in \mathbb{N}} \in A_s)$ (branching property, see before)
= $P(\lim_{n \to \infty} c_n(s)\widetilde{Z}_{n-1} < \infty) = P(\sum_{j=1}^k \lim_{n \to \infty} c_n(s)Z_{n-1}^{(j)} < \infty)$
= $P(\bigcap_{j=1}^k \{\lim_{n \to \infty} c_n(s)Z_{n-1}^{(j)} < \infty\}) = (P(\lim_{n \to \infty} c_n(s)Z_{n-1} < \infty))^k.$

Therefore,

$$P(\lim_{n \to \infty} c_n(s)Z_n < \infty \mid Z_1) = (P(\lim_{n \to \infty} c_n(s)Z_{n-1} < \infty))^{Z_1} \quad \text{a.s}$$

and taking the mean yields (+).

Proof.

(of Theorem 2.5.2) Let $s \in (q, 1)$. Known (from the previous proof):

$$\frac{c_{n+1}(s)}{c_n(s)} \to \frac{1}{m}. \text{ With } n \to \infty \text{ it follows for } u \ge 0$$

$$\psi(mu) = \mathbb{E}(e^{-muY(s)})$$

$$\leftarrow \mathbb{E}(e^{-muc_{n+1}(s)Z_{n+1}})$$

$$= \mathbb{E}(\mathbb{E}(e^{-muc_{n+1}(s)Z_{n+1}} | Z_1))$$

$$= \mathbb{E}\left(\left(\mathbb{E}\left(e^{-um(\frac{c_{n+1}(s)}{c_n(s)}c_n(s)Z_n}\right)\right)^{Z_1}\right)$$

(follows from the branching property,

see Theorem 2.1.6 and Corollary 2.1.7)

$$\rightarrow f(\psi(u)),$$

where the theorem of dominated convergence was used several times.

The substitution $u \mapsto u/m$ and an application of $g := f^{-1}$ yields $\psi(u/m) = g(\psi(u))$. Since $\psi(u) \ge \lim_{u \to \infty} \psi(u) = \lim_{u \to \infty} \mathbb{E}(e^{-uY(s)}) = P(Y(s) = 0) = q$ one can iterate this to

$$1 - \psi(u/m^n) = 1 - g_n(\psi(u)) = O(m^{-n}) \stackrel{(**)}{\longleftrightarrow} \operatorname{E}(Z_1 \log Z_1) < \infty.$$

 ψ convex. \Rightarrow The map $h \mapsto \frac{1-\psi(h)}{h}$ is non-increasing on $(0, \infty)$. \Rightarrow The lefthand side above is equivalent to $\frac{1-\psi(h)}{h} = O(1)$, i.e. equivalent to the existence of the limit $\lim_{h\to 0} \frac{1-\psi(h)}{h} < \infty$, i.e. equivalent to the property, that $-\psi'(0)$ exists and is finite. This is well-known (see Appendix 2) to be equivalent to $E(Y(s)) < \infty$ and in this case the equality $E(Y(s)) = -\psi'(0)$ holds. Therefore, the second assertion follows.

To prove the uniqueness statement let ψ and ϕ be two solutions with $\psi(0) = \phi(0)$ finite and $\psi'(0) = \phi'(0)$ finite. Then, for any u > 0

$$\begin{aligned} |\psi(u) - \phi(u)| &= |f(\psi(u/m)) - f(\phi(u/m)| \leq m |\psi(u/m) - \phi(u/m)| \\ &\leq \cdots \leq m^n |\psi(u/m^n) - \phi(u/m^n)| \\ &= u \left| \frac{\psi(u/m^n) - \psi(0) - (\phi(u/m^n) - \phi(0))}{u/m^n} \right| \\ &\to u |\psi'(0) - \phi'(0)| = 0. \end{aligned}$$

Appendix 2

2.5.3 Lemma

Let X be a nonnegative real r.v. and $\psi : [0, \infty) \to (0, 1]$ the LT of X. Then, the mean E(X) is finite if and only if the derivative $\psi'(0)$ of ψ at 0 (in \mathbb{R}) exists. In this case, $E(X) = -\psi'(0)$.

'⇒': Let $E(X) < \infty$. Define $f : [0, \infty) \to [0, \infty)$ via $f(u) := E(Xe^{-uX})$ for all $u \in [0, \infty)$. Then, obviously, $-\psi$ is a antiderivative of f. By the mean value theorem there exists for each h > 0 a mean-value $\xi \in [0, h]$ with $1 - \psi(h) = -\psi(h) - (-\psi(0)) = \int_0^h f(u) du = f(\xi)h$. Thus,

$$\frac{1 - \psi(h)}{h} = f(\xi) = \mathcal{E}(X e^{-\xi X}).$$

Letting $h \to 0$ (and hence also $\xi \to 0$) yields (on the left-hand side by the def. of the derivative of ψ in 0 and on the right-hand side by dominated convergence) $-\psi'(0) = E(X) < \infty$.

' \Leftarrow ': Conversely, assume that $-\psi'(0) < \infty$. Then, ψ' is defined on the full interval $[0,\infty)$ and

$$-\psi'(u) = \mathcal{E}(Xe^{-uX}), \qquad u \in [0,\infty).$$

Letting $u \to 0$ yields (on the left-hand side by the def. of the right-sided limit and on the right-hand side by dominated convergence)

$$-\psi'(0+) = \mathcal{E}(X).$$

On the other hand, the map $u \mapsto -\psi'(u) = \mathbb{E}(Xe^{-uX})$ is non-increasing on $[0, \infty)$. Thus,

$$-\psi'(u) \leq -\psi'(0)$$

Letting $u \to 0$ yields $E(X) = -\psi'(0+) \le -\psi'(0) < \infty$.