2 Branching processes

Notation: $\mathbb{N}:=\{1,2, \ldots\}, \mathbb{N}_{0}:=\{0,1,2, \ldots\}$

2.1 Definition and branching property

2.1.1 Def. (GWP)

Let $Y_{n j}, n \in \mathbb{N}_{0}, j \in \mathbb{N}$, be independent and identically distributed (iid) r.v. taking values in \mathbb{N}_{0}. The process $\left(Z_{n}\right)_{n \in \mathbb{N}_{0}}$, defined via $Z_{0}:=1$ and

$$
Z_{n+1}:=\sum_{j=1}^{Z_{n}} Y_{n j}, \quad n \in \mathbb{N}_{0}
$$

is called Bienaymé-Galton-Watson branching_process (GWP). Z_{n} is interpreted as the size of a population at generation n.
Define $p_{k}:=P\left(Z_{1}=k\right)=P\left(Y_{01}=k\right), k \in \mathbb{N}_{0}$.
We call $\left(p_{k}\right)_{k \in \mathbb{N}_{0}}$ the reproduction distribution or offspring distribution.
For $i, j, i_{n-1}, \ldots, i_{0} \in \mathbb{N}_{0}$ we have (as long as the conditional probability is defined)

$$
\begin{aligned}
\pi_{i j} & :=P\left(Z_{n+1}=j \mid Z_{n}=i, Z_{n-1}=i_{n-1}, \ldots, Z_{0}=i_{0}\right) \\
& =P\left(Y_{n 1}+\cdots+Y_{n i}=j\right)=\sum_{\substack{j_{1}, \ldots, j_{i} \in \mathbb{N}_{0} \\
j_{1}+\cdots+j_{i}=j}} p_{j_{1}} \cdots p_{j_{i}}=: p_{j}^{* i}
\end{aligned}
$$

where $p_{j}^{* i}=P\left(Y_{01}+\cdots+Y_{0 i}=j\right)$ denotes the i-fold convolution of the offspring distribution at j. Thus, $\left(Z_{n}\right)_{n \in \mathbb{N}_{0}}$ is a HMC with transition probabilities

$$
\pi_{i j}:=P\left(Z_{n+1}=j \mid Z_{n}=i\right)=p_{j}^{* i}, \quad i, j \in \mathbb{N}_{0}
$$

2.1.2 Example (Poisson GWP)

Let $\alpha>0, p_{k}:=e^{-\alpha} \alpha^{k} / k!, k \in \mathbb{N}_{0}$. In this case, $\pi_{i j}=e^{-\alpha i}(\alpha i)^{j} / j!, i, j \in \mathbb{N}_{0}$.

2.1.3 Example (Binary GWP)

Let $p \in[0,1], p_{0}:=1-p$ and $p_{2}:=p$. In this case,

$$
\pi_{i j}=\left\{\begin{array}{cl}
0 & \text { if } j \text { is odd } \\
\binom{i}{j / 2} p^{j / 2}(1-p)^{i-j / 2} & \text { if } j \text { is even }
\end{array}\right.
$$

Thus,

$$
P\left(Z_{1}=2 i_{1}, \ldots, Z_{n}=2 i_{n}\right)=\prod_{k=1}^{n}\left(\binom{2 i_{k-1}}{i_{k}} p^{i_{k}}(1-p)^{2 i_{k-1}-i_{k}}\right)
$$

with the convention $2 i_{0}=1$. For $p=1$ we have $Z_{n}=2^{n}$ a.s. for all $n \in \mathbb{N}_{0}$.

2.1.4 Lemma

Let (Ω, \mathcal{F}, P) be a probability space, $A, B_{i} \in \mathcal{F}(i \in I, I$ at most countable) with $B_{i} \cap B_{j} \forall i, j \in I$ with $i \neq j$ and assume that $B:=\cup_{i \in I} B_{i}$ satisfies $P(B)>0$. If for every $i \in I$ with $P\left(B_{i}\right)>0$ the probability $P\left(A \mid B_{i}\right)$ does not depend on i, i.e. $P\left(A \mid B_{i}\right)=: c$ for all $i \in I$ with $P\left(B_{i}\right)>0$, then $P(A \mid B)=c$.

Proof.

We have

$$
\begin{aligned}
P(A \cap B) & =P\left(A \cap \bigcup_{i \in I} B_{i}\right)=\sum_{i \in I} P\left(A \cap B_{i}\right) \\
& =\sum_{\substack{i \in I \\
P\left(B_{i}\right)>0}} \underbrace{P\left(A \mid B_{i}\right)}_{=c} P\left(B_{i}\right)=c \sum_{\substack{i \in I \\
P\left(B_{i}\right)>0}} P\left(B_{i}\right)=c P(B) .
\end{aligned}
$$

Now divide by $P(B)>0$.

2.1.5 Lemma

Let $\left(Z_{n}^{(l)}\right)_{n \in \mathbb{N}_{0}}, l \in \mathbb{N}$, be independent GWPs, each distributed as $Z:=$ $\left(Z_{n}\right)_{n \in \mathbb{N}_{0}}$. Then, for any $k \in \mathbb{N}$, the process $\widetilde{Z}:=\left(\widetilde{Z}_{n}\right)_{n \in \mathbb{N}_{0}}$, defined via $\widetilde{Z}_{n}:=\sum_{l=1}^{k} Z_{n}^{(l)}$ for all $n \in \mathbb{N}_{0}$, is a HMC with the same transition probabilities as Z.

Proof.
Let $j, i_{1}, \ldots, i_{k} \in \mathbb{N}_{0}$ with $P\left(Z_{n}^{(1)}=i_{1}, \ldots, Z_{n}^{(k)}=i_{k}\right)>0$. Define $i:=$ $i_{1}+\cdots+i_{k}$. The conditional probability

$$
\begin{aligned}
& P\left(\widetilde{Z}_{n+1}=j \mid Z_{n}^{(1)}=i_{1}, \ldots, Z_{n}^{(k)}=i_{k}\right) \\
& \quad=\sum_{\substack{j_{1}, \ldots, j_{k} \in \mathbb{N}_{0} \\
j_{1}+\ldots+j_{k}=j}} P\left(Z_{n+1}^{(1)}=j_{1}, \ldots, Z_{n+1}^{(k)}=j_{k} \mid Z_{n}^{(1)}=i_{1}, \ldots, Z_{n}^{(k)}=i_{k}\right) \\
& \quad=\sum_{\substack{j_{1}, \ldots, j_{k} \in \mathbb{N}_{0} \\
j_{1}+\ldots+j_{k}=j}} \prod_{l=1}^{k} P\left(Z_{n+1}^{(l)}=j_{l} \mid Z_{n}^{(l)}=i_{l}\right)=\sum_{\substack{j_{1}, \ldots, j_{k} \in \mathbb{N}_{0} \\
j_{1}+\ldots+j_{k}=j}} \prod_{l=1}^{k} p_{j_{l}}^{* i_{l}}=p_{j}^{* i}
\end{aligned}
$$

only depends via $i=i_{1}+\cdots+i_{k}$ on i_{1}, \ldots, i_{k}. Lemma 2.1.4. \Rightarrow

$$
\begin{aligned}
P\left(\widetilde{Z}_{n+1}=j \mid \widetilde{Z}_{n}=i\right) & =P\left(\widetilde{Z}_{n+1}=j \mid \bigcup_{\substack{i_{1}, \ldots, i_{k} \in \mathbb{N}_{0} \\
i_{1}+\cdots+i_{k}=i}}\left\{Z_{n}^{(1)}=i_{1}, \ldots Z_{n}^{(k)}=i_{k}\right\}\right) \\
& =p_{j}^{* i}, \quad i, j \in \mathbb{N}_{0} .
\end{aligned}
$$

The calculation does not change, if the condition $\widetilde{Z}_{n}=i$ is replaced by $\widetilde{Z}_{n}=i, \widetilde{Z}_{n-1}=i_{n-1}, \ldots, \widetilde{Z}_{0}=i_{0} . \Rightarrow \widetilde{Z}$ is a HMC with the same transition probabilities as Z.

In the following let $\mathbb{N}_{0}^{\infty}:=\times_{i \in \mathbb{N}} \mathbb{N}_{0}$. For $i \in \mathbb{N}$ let $\pi_{i}: \mathbb{N}_{0}^{\infty} \rightarrow \mathbb{N}_{0}$ be the projection to the i-th component, i.e. $\pi_{i}(k)=k_{i}$ for all $k=\left(k_{i}\right)_{i \in \mathbb{N}} \in \mathbb{N}_{0}^{\infty}$. Furthermore, let \mathcal{G} denote the smallest σ-algebra in \mathbb{N}_{0}^{∞} such that all projections $\pi_{i}, i \in \mathbb{N}$, are measurable. \mathcal{G} is called the product- σ-algebra of \mathbb{N}_{0}^{∞}. It is easily seen that $\mathcal{G}=\mathcal{F}\left(\pi_{i}, i \in \mathbb{N}\right)=\mathcal{F}\left(\left\{\pi_{i}^{-1}\left(A_{i}\right): i \in \mathbb{N}, A_{i} \subseteq \mathbb{N}_{0}\right\}\right)$.

2.1.6 Theorem (Branching Property)

For $r \in \mathbb{N}_{0}, k \in \mathbb{N}$ and $A \in \mathcal{G}$,

$$
\begin{equation*}
P\left(\left(Z_{n}\right)_{n>r} \in A \mid Z_{r}=k\right)=P\left(\left(\widetilde{Z}_{n}\right)_{n \in \mathbb{N}} \in A\right) \tag{*}
\end{equation*}
$$

where $\widetilde{Z}_{n}:=\sum_{j=1}^{k} Z_{n}^{(j)}$ and $\left(Z_{n}^{(j)}\right)_{n \in \mathbb{N}_{0}}, j \in\{1, \ldots, k\}$, are independent $G W P s$, all distributed as $Z:=\left(Z_{n}\right)_{n \in \mathbb{N}_{0}}$.

Proof.

For fixed $r \in \mathbb{N}_{0}$ and $k \in \mathbb{N}$ let \mathcal{D} be the set of all $A \in \mathcal{G}$ satisfying (*). It is easily seen that \mathcal{D} is a Dynkin system in \mathbb{N}_{0}^{∞}. Consider the system \mathcal{E} of all A of the form $A=A_{1} \times \cdots \times A_{m} \times \mathbb{N}_{0} \times \mathbb{N}_{0} \times \cdots$ with $m \in \mathbb{N}$ and $A_{1}, \ldots, A_{m} \subseteq \mathbb{N}_{0}$. Obviously, \mathcal{E} is a \cap-stable generator of \mathcal{G}, i.e. $\mathcal{F}(\mathcal{E})=\mathcal{G}$. If we can verify that $\mathcal{E} \subseteq \mathcal{D}$, then the statement follows, since then $\mathcal{G}=\mathcal{F}(\mathcal{E})=$ $\mathcal{D}(\mathcal{E}) \subseteq \mathcal{D}(\mathcal{D})=\mathcal{D}$. It remains to verify that $(*)$ holds for $A \in \mathcal{E}$. Each such A is a at most countable union of sets of the form

$$
\left\{k_{1}\right\} \times \cdots \times\left\{k_{m}\right\} \times \mathbb{N}_{0} \times \mathbb{N}_{0} \times \cdots
$$

with $m \in \mathbb{N}$ and $k_{1}, \ldots, k_{m} \in \mathbb{N}_{0}$. Because of the σ-additivity of the two probability measures on the left-hand and right-hand side in $(*)$ it suffices to verify $(*)$ for sets of the form $(* *)$. In this case the left-hand side in $(*)$ is equal to

$$
\begin{aligned}
& P\left(Z_{r+1}=k_{1}, \ldots, Z_{r+m}=k_{m} \mid Z_{r}=k\right) \\
& \quad=\prod_{n=1}^{m} P\left(Z_{r+n}=k_{n} \mid Z_{r+n-1}=k_{n-1}\right)=\prod_{n=1}^{m} \pi_{k_{n-1}, k_{n}}
\end{aligned}
$$

where $k_{0}:=k$. The right-hand side in $(*)$ is as well equal to

$$
P\left(\widetilde{Z}_{1}=k_{1}, \ldots, \widetilde{Z}_{m}=k_{m}\right)=\prod_{n=1}^{m} P\left(\widetilde{Z}_{n}=k_{n} \mid \widetilde{Z}_{n-1}=k_{n-1}\right)=\prod_{n=1}^{m} \pi_{k_{n-1}, k_{n}}
$$

since, by Lemma 2.1.5, \widetilde{Z} has the same transition probabilities as Z.

2.1.7 Corollary

For $k, n \in \mathbb{N}_{0}$ and any function $h: \mathbb{N}_{0} \rightarrow[0, \infty)$,

$$
\mathrm{E}\left(h\left(Z_{n+1}\right) \mid Z_{1}=k\right)=\mathrm{E}\left(h\left(\sum_{j=1}^{k} Z_{n}^{(j)}\right)\right)
$$

where $\left(Z_{n}^{(j)}\right)_{n \in \mathbb{N}_{0}}, j \in \mathbb{N}$, are independent copies of Z.

Proof.

For $k=0$ both sides are equal to $h(0)$. Assume now that $k \in \mathbb{N}$. For $h=1_{B}$ with $B \subseteq \mathbb{N}_{0}$ the statement follows from Theorem 2.1.6 (branching property) with the choice $A:=\pi_{n}^{-1}(B) \in \mathcal{G}$. Thus, the statement holds for elementary functions. If $h: \mathbb{N}_{0} \rightarrow[0, \infty)$ is arbitrary, then there exist elementary functions $0 \leq h_{1} \leq h_{2} \leq \cdots$ with $\lim _{m \rightarrow \infty} h_{m}=h$. The statement then follows by two-times applying the theorem of monotone convergence.

In order to compute the mean and the variance of Z_{n}, the following lemma will be useful.

2.1.8 Lemma

Let X_{1}, X_{2}, \ldots be iid \mathbb{N}_{0}-valued r.v. and let Y be a further \mathbb{N}_{0}-valued r.v. being independent of $\left(X_{n}\right)_{n \in \mathbb{N}}$. If g denotes the probability generation function (pgf) of X_{1} and h the pgf of Y, then $S:=\sum_{j=1}^{Y} X_{j}$ has the pgf $h \circ g$ and $\mathrm{E}(S)=\mathrm{E}(Y) \mathrm{E}\left(X_{1}\right) \in[0, \infty]$. If $\mathrm{E}(S)<\infty$ then $\operatorname{Var}(S)=$ $\operatorname{Var}(Y)\left(\mathrm{E}\left(X_{1}\right)\right)^{2}+\mathrm{E}(Y) \operatorname{Var}\left(X_{1}\right)$.

Proof.

Let $s \in[0,1]$. For $k \in \mathbb{N}_{0}, \mathrm{E}\left(s^{S} \mid Y=k\right)=\mathrm{E}\left(s^{X_{1}+\cdots+X_{k}} \mid Y=k\right)=$ $\mathrm{E}\left(s^{X_{1}} \cdots s^{X_{k}}\right)=\left(\mathrm{E}\left(s^{X_{1}}\right)\right)^{k}=(g(s))^{k}$. Multiplication with $P(Y=k)$ and summation over all $k \in \mathbb{N}_{0}$ yields

$$
\mathrm{E}\left(s^{S}\right)=\sum_{k=0}^{\infty} \mathrm{E}\left(s^{S} \mid Y=k\right) P(Y=k)=\sum_{k=0}^{\infty}(g(s))^{k} P(Y=k)=h(g(s))
$$

Thus, S has the pgf $h \circ g$. It follows that $\mathrm{E}(S)=(h \circ g)^{\prime}(1)=h^{\prime}(g(1)) g^{\prime}(1)=$ $h^{\prime}(1) g^{\prime}(1)=\mathrm{E}(Y) \mathrm{E}\left(X_{1}\right)$ and

$$
\begin{aligned}
\mathrm{E}(S(S-1)) & =(h \circ g)^{\prime \prime}(1)=h^{\prime \prime}(g(1))\left(g^{\prime}(1)\right)^{2}+h^{\prime}(g(1)) g^{\prime \prime}(1) \\
& =h^{\prime \prime}(1)\left(g^{\prime}(1)\right)^{2}+h^{\prime}(1) g^{\prime \prime}(1) \\
& =\mathrm{E}(Y(Y-1))\left(\mathrm{E}\left(X_{1}\right)\right)^{2}+\mathrm{E}(Y) \mathrm{E}\left(X_{1}\left(X_{1}-1\right)\right) .
\end{aligned}
$$

Assume now that $\mathrm{E}(S)<\infty$. Summation of $\mathrm{E}(S)-(\mathrm{E}(S))^{2}=\mathrm{E}(Y) \mathrm{E}\left(X_{1}\right)-$ $(\mathrm{E}(Y))^{2}\left(\mathrm{E}\left(X_{1}\right)\right)^{2}$ yields

$$
\begin{aligned}
\operatorname{Var}(S) & =\mathrm{E}(Y(Y-1))\left(\mathrm{E}\left(X_{1}\right)\right)^{2}+\mathrm{E}(Y) \mathrm{E}\left(X_{1}^{2}\right)-(\mathrm{E}(Y))^{2}\left(\mathrm{E}\left(X_{1}\right)\right)^{2} \\
& =\mathrm{E}\left(Y^{2}\right)\left(\mathrm{E}\left(X_{1}\right)\right)^{2}+\mathrm{E}(Y)\left(\mathrm{E}\left(X_{1}^{2}\right)-\left(\mathrm{E}\left(X_{1}\right)\right)^{2}\right)-(\mathrm{E}(Y))^{2}\left(\mathrm{E}\left(X_{1}\right)\right)^{2} \\
& =\operatorname{Var}(Y)\left(\mathrm{E}\left(X_{1}\right)\right)^{2}+\mathrm{E}(Y) \operatorname{Var}\left(X_{1}\right) .
\end{aligned}
$$

Now let f_{n} denote the pgf of Z_{n}, i.e.

$$
f_{n}(s):=\mathrm{E}\left(s^{Z_{n}}\right)=\sum_{k=0}^{\infty} P\left(Z_{n}=k\right) s^{k}, \quad s \in[0,1]
$$

Define $f:=f_{1}$, i.e. $f(s)=\sum_{k=0}^{\infty} p_{k} s^{k}, s \in[0,1]$. Lemma 2.1.8 (applied with $Y:=Z_{n-1}$ and $\left.X_{j}:=Y_{n-1, j}\right)$ yields

$$
f_{n}=f_{n-1} \circ f, \quad n \in \mathbb{N}
$$

and

$$
\mathrm{E}\left(Z_{n}\right)=m \mathrm{E}\left(Z_{n-1}\right), \quad n \in \mathbb{N}
$$

where $m:=f^{\prime}(1)=\sum_{k=1}^{\infty} k p_{k}=\mathrm{E}\left(Z_{1}\right)$ is the expected number of offspring of any individual. Moreover, for $m<\infty$, Lemma 2.1.8 yields

$$
\operatorname{Var}\left(Z_{n}\right)=\sigma^{2} \mathrm{E}\left(Z_{n-1}\right)+m^{2} \operatorname{Var}\left(Z_{n-1}\right), \quad n \in \mathbb{N}
$$

where $\sigma^{2}:=\operatorname{Var}\left(Z_{1}\right)=\sum_{k=1}^{\infty} k^{2} p_{k}-m^{2}=f^{\prime \prime}(1)+f^{\prime}(1)-\left(f^{\prime}(1)\right)^{2}$ is the reproductive variance. In particular,

$$
f_{n}=\underbrace{f \circ \cdots \circ f}_{n-\text { times }}
$$

is the n-fold convolution of f and the mean of Z_{n} is $\mathrm{E}\left(Z_{n}\right)=m^{n}, n \in \mathbb{N}_{0}$. Moreover, if $m<\infty$, an induction on n shows that the variance of Z_{n} is

$$
\operatorname{Var}\left(Z_{n}\right)=\left\{\begin{array}{cl}
\frac{\sigma^{2} m^{n-1}\left(m^{n}-1\right)}{m-1} & \text { if } m \neq 1 \\
n \sigma^{2} & \text { if } m=1
\end{array}\right.
$$

2.2 Extinction probability

Given: GWP $Z=\left(Z_{n}\right)_{n \in \mathbb{N}_{0}}$ with $Z_{0}=1$ and offspring distribution $\left(p_{k}\right)_{k \in \mathbb{N}_{0}}$.
Notation: $f_{n}:=\operatorname{pgf}$ of Z_{n}.
Known: $f_{n}=\underbrace{f \circ \cdots \circ f}_{n-\text { times }}$, where $f(s):=\sum_{k=0}^{\infty} p_{k} s^{k}, s \in[0,1]$.
$m:=\mathrm{E}\left(Z_{1}\right)=f^{\prime}(1-)=\sum_{k=1}^{\infty} k p_{k} \in[0, \infty]$

2.2.1 Def. (Extinction Probability)

The event

$$
Q:=\left\{Z_{n}=0 \text { eventually }\right\}:=\liminf _{n \rightarrow \infty}\left\{Z_{n}=0\right\}:=\bigcup_{n \in \mathbb{N} m=n}^{\infty}\left\{Z_{m}=0\right\}
$$

is called the extinction event and

$$
q:=P(Q)=P\left(Z_{n}=0 \text { eventually }\right)=\lim _{n \rightarrow \infty} P\left(Z_{n}=0\right)=\lim _{n \rightarrow \infty} f_{n}(0)
$$

the extinction probability of Z.

2.2.2 Theorem (Fixed Point Theorem)

The fixed point equation $f(s)=s$ has exactly one solution in $[0,1)$ if $m>1$ and no solution in $[0,1)$ if $m \leq 1$ and $p_{1}<1$. The extinction probability q is the smallest fixed point of f in the interval $[0,1]$.

Proof.

We exclude the trivial case $p_{1}=1$. From $f_{n}(0) \rightarrow q$ and the continuity of f it follows that

$$
f(q) \leftarrow f\left(f_{n}(0)\right)=f_{n+1}(0) \rightarrow q
$$

Thus, $f(q)=q$. Now let $a \in[0,1]$ be arbitrary with $f(a)=a$. By induction on $n \in \mathbb{N}$ it follows that $f_{n}(0) \leq a$: For $n=1$ this is clear, since f is nondecreasing and hence $f_{1}(0)=f(0) \leq f(a)$. The induction step from n to $n+1$ reads $f_{n+1}(0)=f\left(f_{n}(0)\right) \leq f(a)=a$. Letting $n \rightarrow \infty$ yields $q \leq a$, i.e. q is the smallest solution of the equation $f(s)=s$ in $[0,1]$.
Define $\varphi(s):=f(s)-s, s \in[0,1]$.
Assume first that $m \leq 1$ and $p_{1}<1$. Then, for all $s \in[0,1)$,

$$
\varphi^{\prime}(s)=f^{\prime}(s)-1<f^{\prime}(1)-1 \leq 0
$$

i.e. φ is strictly decreasing. In particular, $\varphi(s)>\varphi(1)=0$, so $f(s)>s$ for all $s \in[0,1)$. Therefore, the equation $f(s)=s$ has no solution in $[0,1)$.
Assume now that $m>1$. Then,

$$
\frac{1-f(s)}{1-s} \rightarrow f^{\prime}(1)=m>1, \quad s \rightarrow 1
$$

Thus, $1-f(s)>1-s$, so $\varphi(s)<0$ for all s in a left neighborhood of 1 . On the other hand, $\varphi(0)=f(0) \geq 0$. Thus, by the intermediate value theorem, there exists $s \in[0,1)$ with $\varphi(s)=0$, i.e. $f(s)=s$. To see that there is only one such s, assume that there exist $0 \leq s_{1}<s_{2}<1$ with $f\left(s_{1}\right)=s_{1}$ and $f\left(s_{2}\right)=s_{2}$. Then, $\varphi\left(s_{1}\right)=\varphi\left(s_{2}\right)=0=\varphi(1)$. Thus, by the theorem of Rolle, there exist a, b with $s_{1}<a<s_{2}<b<1$ and $\varphi^{\prime}(a)=\varphi^{\prime}(b)=0$, i.e. $f^{\prime}(a)=f^{\prime}(b)$, in contradiction to the fact that f^{\prime} is strictly increasing ${ }^{1}$ if $m>1$. Thus, the assumption is wrong, so there exists exactly one $s \in[0,1)$ with $f(s)=s$.

2.2.3 Theorem

If $p_{1}<1$ then $P\left(Z_{n} \rightarrow 0\right)+P\left(Z_{n} \rightarrow \infty\right)=1$.

[^0]
Proof.

For $q=1$ there is nothing to show. Thus, let $q<1$. Then, by Theorem 2.2.2, $m>1$ and f^{\prime} is strictly increasing.
Assume that $f^{\prime}(q) \geq 1$. Then, for all $s \in(q, 1), f^{\prime}(s)>f^{\prime}(q) \geq 1$, and hence $f(1)-q=f(1)-f(q)=\int_{q}^{1} f^{\prime}(s) \mathrm{d} s>\int_{q}^{1} 1 \mathrm{~d} s=1-q$, so $f(1)>1$, an obvious contradiction. Thus, $f^{\prime}(q)<1$.
Induction yields

$$
f_{n}^{\prime}(q)=\left(f^{\prime}(q)\right)^{n}, \quad n \in \mathbb{N}
$$

For $n=1$ this is clear, since $f_{1}=f$. The step from n to $n+1$ reads $f_{n+1}^{\prime}(q)=$ $\left(f_{n} \circ f\right)^{\prime}(q)=f_{n}^{\prime}(f(q)) f^{\prime}(q)=f_{n}^{\prime}(q) f^{\prime}(q) \stackrel{I V}{=}\left(f^{\prime}(q)\right)^{n} f^{\prime}(q)=\left(f^{\prime}(q)\right)^{n+1}$.

Case 1: Let $q \in(0,1)$. Then, for all $k, n \in \mathbb{N}$,
$P\left(1 \leq Z_{n} \leq k\right)=\sum_{j=1}^{k} P\left(Z_{n}=j\right) \leq \sum_{j=1}^{k} P\left(Z_{n}=j\right) \frac{j q^{j-1}}{q^{k}} \leq \frac{f_{n}^{\prime}(q)}{q^{k}}=\frac{\left(f^{\prime}(q)\right)^{n}}{q^{k}}$.
$\Rightarrow \sum_{n=1}^{\infty} P\left(1 \leq Z_{n} \leq k\right)<\infty$.
Borel-Cantelli lemma. $\Rightarrow P\left(1 \leq Z_{n} \leq k \infty\right.$-often $)=0$, and the assertion follows for $q>0$.

Case 2: Assume now that $q=0$. Then, $p_{0}=f(0)=f(q)=q=0$ and hence $Z_{1} \leq Z_{2} \leq \cdots$ almost surely. For each $n \in \mathbb{N}$ it follows that

$$
\begin{aligned}
& P\left(\bigcap_{m=n}^{\infty}\left\{Z_{m}=Z_{m+1}\right\}\right)=\lim _{N \rightarrow \infty} P\left(\bigcap_{m=n}^{n+N-1}\left\{Z_{m}=Z_{m+1}\right\}\right) \\
& \quad=\lim _{N \rightarrow \infty} \sum_{k=0}^{\infty} P\left(k=Z_{n}=Z_{n+1}=\cdots=Z_{n+N}\right) \\
& =\lim _{N \rightarrow \infty} \sum_{k=0}^{\infty} P\left(Z_{n}=k\right) \underbrace{p_{1}^{k} \cdots p_{1}^{k}}_{N-\text { times }} \quad\left(\text { since } Z_{1} \leq Z_{2} \leq \cdots \text { a.s. }\right) \\
& \quad=\lim _{N \rightarrow \infty} \sum_{k=0}^{\infty} P\left(Z_{n}=k\right)\left(p_{1}^{N}\right)^{k}=\lim _{N \rightarrow \infty} f_{n}\left(p_{1}^{N}\right) \stackrel{p_{1}<1}{=} f_{n}(0) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& P\left(Z_{n}=Z_{n+1} \text { eventually }\right)=P\left(\bigcup_{n \in \mathbb{N}} \bigcap_{m=n}^{\infty}\left\{Z_{m+1}=Z_{m}\right\}\right) \\
& \quad=\lim _{n \rightarrow \infty} P\left(\bigcap_{m=n}^{\infty}\left\{Z_{m}=Z_{m+1}\right\}\right)=\lim _{n \rightarrow \infty} f_{n}(0)=q=0
\end{aligned}
$$

i.e. $P\left(Z_{n} \rightarrow \infty\right)=P\left(Z_{n}<Z_{n+1} \infty\right.$-often $)=1-P\left(Z_{n}=Z_{n+1}\right.$ eventually $)=$ 1.

2.2.4 Def.

A GWP Z is called subcritical if $m<1$, critical if $m=1$ and supercritical if $m>1$.

2.3 Critical case

Given: GWP $Z=\left(Z_{n}\right)_{n \in \mathbb{N}_{0}}$ with $Z_{0}=1$
It is assumed that $m=1$ and $p_{1}<1$.
Known:

- $q:=P\left(Z_{n} \rightarrow 0\right)=1$
- $\mathrm{E}\left(Z_{n}\right)=m^{n}=1$ for all $n \in \mathbb{N}_{0}$
- $\operatorname{Var}\left(Z_{n}\right)=n \sigma^{2} \rightarrow \infty$

Note that $p_{1}<1$ is equivalent to $\sigma^{2}:=\operatorname{Var}\left(Z_{1}\right)>0$.

2.3.1 Lemma (Basic Lemma)

If $m=1$ and $\sigma^{2} \in(0, \infty)$ then

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left(\frac{1}{1-f_{n}(s)}-\frac{1}{1-s}\right)=\frac{\sigma^{2}}{2}
$$

uniformly for $s \in[0,1)$.

2.3.2 Theorem (Yaglom Limit)

Let $m=1$ and $\sigma^{2} \in(0, \infty)$. Then
(a) $\lim _{n \rightarrow \infty} n P\left(Z_{n}>0\right)=\frac{2}{\sigma^{2}}, \quad$ (Kolmogorov, 1938)
(b) $\lim _{n \rightarrow \infty} \mathrm{E}\left(\left.\frac{Z_{n}}{n} \right\rvert\, Z_{n}>0\right)=\frac{\sigma^{2}}{2}$, and
(c) Exponential limit law:

$$
\lim _{n \rightarrow \infty} P\left(\left.\frac{Z_{n}}{n} \leq u \right\rvert\, Z_{n}>0\right)=1-e^{-2 u / \sigma^{2}}, u \geq 0 . \text { (Yaglom, 1947) }
$$

Rem.

Conditional on $Z_{n}>0$, the r.v. Z_{n} / n converges in distribution to an exponential distribution with parameter $2 / \sigma^{2}$.

Proof.

(of Lemma 2.3.1) Let $s \in[0,1$).
Taylor expansion in 1: $f(s)=s+\frac{\sigma^{2}}{2}(1-s)^{2}+r(s)(1-s)^{2}$ for a continuous function r with $\lim _{s \uparrow 1} r(s)=0 . \Rightarrow$

$$
\begin{aligned}
\frac{1}{1-f(s)}-\frac{1}{1-s} & =\frac{f(s)-s}{(1-f(s))(1-s)}=\frac{\frac{\sigma^{2}}{2}(1-s)^{2}+r(s)(1-s)^{2}}{(1-f(s))(1-s)} \\
& =\frac{1-s}{1-f(s)}\left(\frac{\sigma^{2}}{2}+r(s)\right)=\frac{\sigma^{2}}{2}+\rho(s)
\end{aligned}
$$

where again ρ is continuous with $\lim _{s \uparrow 1} \rho(s)=0$. Iteration yields

$$
\begin{aligned}
\frac{1}{n}\left(\frac{1}{1-f_{n}(s)}-\frac{1}{1-s}\right) & =\frac{1}{n} \sum_{j=0}^{n-1}\left(\frac{1}{1-f\left(f_{j}(s)\right)}-\frac{1}{1-f_{j}(s)}\right) \\
& =\frac{\sigma^{2}}{2}+\frac{1}{n} \sum_{j=0}^{n-1} \rho\left(f_{j}(s)\right)
\end{aligned}
$$

The convergence $f_{n}(s) \rightarrow 1$ is uniform in $s \in[0,1)$, since $f_{n}(0) \leq f_{n}(s) \leq 1$ and $f_{n}(0) \rightarrow 1$. The result follows since ρ is bounded.

Proof.

(of Theorem 2.3.2)
(a) $n P\left(Z_{n}>0\right)=n\left(1-f_{n}(0)\right)=\left(\frac{1}{n}\left(\frac{1}{1-f_{n}(0)}-1\right)+\frac{1}{n}\right)^{-1} \rightarrow \frac{2}{\sigma^{2}}$ by

Lemma 2.3.1 (applied with $s=0$).
(b) $\mathrm{E}\left(\left.\frac{Z_{n}}{n} \right\rvert\, Z_{n}>0\right)=\frac{\mathrm{E}\left(Z_{n}\right)}{n\left(1-f_{n}(0)\right)}=\frac{1}{n P\left(Z_{n}>0\right)} \xrightarrow{(a)} \frac{\sigma^{2}}{2}$.
(c) Let $u>0$. Define $\beta:=2 / \sigma^{2}$.

$$
\begin{aligned}
& \mathrm{E}\left(e^{-u Z_{n} / n} \mid Z_{n}>0\right)=\frac{f_{n}\left(e^{-u / n}\right)-f_{n}(0)}{1-f_{n}(0)}=1-\frac{1-f_{n}\left(e^{-u / n}\right)}{1-f_{n}(0)} \\
& \quad=1-\frac{1}{n P\left(Z_{n}>0\right)}\left(\frac{1}{n}\left(\frac{1}{1-f_{n}\left(e^{-u / n}\right)}-\frac{1}{1-e^{-u / n}}\right)+\frac{1}{n\left(1-e^{-u / n}\right)}\right)^{-1}
\end{aligned}
$$

converges by (a) and Lemma 2.3.1 to

$$
1-\frac{1}{\beta}\left(\frac{1}{\beta}+\frac{1}{u}\right)^{-1}=1-\frac{1}{\beta} \frac{\beta u}{\beta+u}=\frac{\beta}{\beta+u}
$$

where the uniform convergence in Lemma 2.3.1 is essential here.
The map $u \mapsto \frac{\beta}{\beta+u}$ is the Laplace transform (LT) of $\operatorname{Exp}(\beta)$. By the continuity theorem for LT the pointwise convergence of the LTs implies the convergence in distribution.

2.4 Subcritical case

Given: GWP $Z=\left(Z_{n}\right)_{n \in \mathbb{N}_{0}}$ with $Z_{0}=1$ and $m:=\mathrm{E}\left(Z_{1}\right)<\infty$
Taylor expansion of the pgf f of Z_{1} at 1 :

$$
f(s)=1-m(1-s)+r(s)(1-s), \quad s \in[0,1] .
$$

2.4.1 Lemma (Comparison Lemma)

For all $\delta \in(0,1)$,

$$
\sum_{k=1}^{\infty} r\left(1-\delta^{k}\right)<\infty . \Longleftrightarrow \sum_{k=1}^{\infty} p_{k} k \log k<\infty
$$

Rem.

The condition on the right-hand side is equivalent to $\mathrm{E}\left(Z_{1} \log Z_{1}\right)<\infty$.

2.4.2 Theorem (Kolmogorov, 1938)

If $p_{0}<1$ and $m<1$ then the limit

$$
\varphi(0):=\lim _{n \rightarrow \infty} \frac{P\left(Z_{n}>0\right)}{m^{n}}
$$

exists with $\varphi(0)=0$ if $\mathrm{E}\left(Z_{1} \log Z_{1}\right)=\infty$ and $\varphi(0)>0$ otherwise.

Rem.

The theorem thus states that $P\left(Z_{n}>0\right)$ behaves (up to a multiplicative constant) as m^{n} provided that $\mathrm{E}\left(Z_{1} \log Z_{1}\right)<\infty$.

The following result shows convergence conditional on non-extinction.
2.4.3 Theorem (Convergence for subcritical GWPs, Yaglom, 1947) If $p_{0}<1$ and $m<1$ then for each $k \in \mathbb{N}$ the limit

$$
b_{k}:=\lim _{n \rightarrow \infty} P\left(Z_{n}=k \mid Z_{n}>0\right)
$$

exists and $\sum_{k=1}^{\infty} b_{k}=1$, i.e. $\left(b_{k}\right)_{k \in \mathbb{N}}$ defines a distribution on \mathbb{N}. The mean of this distribution is finite if and only if $\mathrm{E}\left(Z_{1} \log Z_{1}\right)<\infty$ and in this case

$$
\sum_{k=1}^{\infty} k b_{k}=\frac{1}{\varphi(0)}
$$

The $\operatorname{pgf} g(s):=\sum_{k=1}^{\infty} b_{k} s^{k}, s \in[0,1]$, is a solution to the equation

$$
g(f(s))=1-m(1-g(s)), \quad s \in[0,1] .
$$

Proof.

(of Lemma 2.4.1) For all $s \in[0,1$),

$$
\begin{aligned}
r(s) & =m-\frac{1-f(s)}{1-s}=m-\sum_{j \geq 0} s^{j}\left(1-\sum_{k \geq 0} p_{k} s^{k}\right) \\
& =m-\sum_{j \geq 0} s^{j}+\sum_{k \geq 0} p_{k} \sum_{j \geq 0} s^{j+k}=m-\sum_{n \geq 0} s^{n}+\sum_{k \geq 0} p_{k} \sum_{n \geq k} s^{n} \\
& =m-\sum_{n \geq 0} s^{n}+\sum_{n \geq 0}\left(\sum_{k=0}^{n} p_{k}\right) s^{n}=m-\sum_{n \geq 0} a_{n} s^{n},
\end{aligned}
$$

where $a_{n}:=1-\sum_{k=0}^{n} p_{k}=\sum_{k>n} p_{k}, n \in \mathbb{N}_{0}$. Note that $r(1)=0$ and, hence, $\sum_{n \geq 0} a_{n}=m$. In particular, r is a nonnegative nonincreasing function on $[0,1]$. Define $\alpha:=-\log \delta . r$ nonincreasing. \Rightarrow For $j \in \mathbb{N}$

$$
\begin{aligned}
r(1-\delta)+\int_{1}^{j} r\left(1-e^{-\alpha x}\right) \mathrm{d} x & \geq \sum_{k=1}^{j} r\left(1-\delta^{k}\right) \\
& \geq \int_{1}^{j} r\left(1-e^{-\alpha x}\right) \mathrm{d} x=\frac{1}{\alpha} \int_{1-\delta}^{1-\delta^{j}} \frac{r(s)}{1-s} \mathrm{~d} s
\end{aligned}
$$

where the last equality follows from the substitution $s:=1-e^{-\alpha x}$. Thus,

$$
\sum_{k \geq 1} r\left(1-\delta^{k}\right)<\infty \quad \Longleftrightarrow \quad \int_{0}^{1} \frac{r(s)}{1-s} \mathrm{~d} s<\infty
$$

But, for all $s \in[0,1)$,

$$
\begin{aligned}
\frac{r(s)}{1-s} & =\sum_{j \geq 0} s^{j}\left(m-\sum_{n \geq 0} a_{n} s^{n}\right)=m \sum_{j \geq 0} s^{j}-\sum_{n \geq 0} a_{n} \sum_{j \geq 0} s^{j+n} \\
& =m \sum_{k \geq 0} s^{k}-\sum_{n \geq 0} a_{n} \sum_{k \geq n} s^{k}=m \sum_{k \geq 0} s^{k}-\sum_{k \geq 0}\left(\sum_{n=0}^{k} a_{n}\right) s^{k} \\
& =\sum_{k \geq 0}\left(m-\sum_{n=0}^{k} a_{n}\right) s^{k}=\sum_{k \geq 0}\left(\sum_{n>k} a_{n}\right) s^{k} .
\end{aligned}
$$

Integration yields

$$
\int_{0}^{1} \frac{r(s)}{1-s} \mathrm{~d} s=\int_{0}^{1} \sum_{k \geq 0}\left(\sum_{n>k} a_{n}\right) s^{k} \mathrm{~d} s=\sum_{k \geq 0} \sum_{n>k} \frac{a_{n}}{k+1}=\sum_{n \geq 1} a_{n} \sum_{k=0}^{n-1} \frac{1}{k+1}
$$

Since $\sum_{k=0}^{n-1} \frac{1}{k+1} \sim \log n$ as $n \rightarrow \infty$, this series converges if and only if the series $\sum_{n \geq 1} a_{n} \log n$ converges. Now,

$$
\sum_{n \geq 1} a_{n} \log n=\sum_{n \geq 1}\left(\sum_{k>n} p_{k}\right) \log n=\sum_{k \geq 2} p_{k} \sum_{n=1}^{k-1} \log n .
$$

Since $\sum_{n=1}^{k-1} \log n \sim \int_{1}^{k} \log x \mathrm{~d} x=[x \log x-x]_{1}^{k} \sim k \log k$ as $k \rightarrow \infty$, this series converges if and only if $\sum_{k \geq 1} p_{k} k \log k<\infty$.

Proof.
Proof.
(of Theorem 2.4.2) We have $\frac{1-f(s)}{1-s}=m-r(s)$. Replacing s by $f_{k}(s)$ yields

$$
\frac{1-f_{k+1}(s)}{1-f_{k}(s)}=m\left(1-\frac{r\left(f_{k}(s)\right)}{m}\right)
$$

and hence (taking products) $\frac{1-f_{n}(s)}{1-s}=m^{n} \prod_{k=0}^{n-1}\left(1-\frac{r\left(f_{k}(s)\right)}{m}\right)$.
$0 \leq r / m \leq 1 . \Rightarrow m^{-n}\left(1-f_{n}(s)\right) /(1-s)$ is nonincreasing in n and hence converges to a limit $\varphi(s) \geq 0$. In particular (choose $s=0) P\left(Z_{n}>0\right)=$ $1-f_{n}(0) \sim m^{n} \varphi(0)$. The well-known relation between convergence of sums and products shows that $\varphi(0)>0$ if and only if $\sum_{k \geq 1} r\left(f_{k}(0)\right)<\infty$. Now, $1-f(s) \leq m(1-s)$ and, by induction, $1-f_{k}(s) \leq m^{k}(1-s)$ for all $k \in \mathbb{N}$. Similarly it follows that $1-f_{k}(s) \geq\left(f^{\prime}\left(s_{0}\right)\right)^{k}(1-s)$ for $s \geq s_{0}$ and with $s_{0}=p_{0}>0$ it follows with the notation $a:=f^{\prime}\left(p_{0}\right)>0$ that

$$
1-m^{k} \leq f_{k}(0)=f_{k-1}\left(p_{0}\right) \leq 1-a^{k-1}\left(1-p_{0}\right) \leq 1-b^{k}
$$

where $b:=a \wedge\left(1-p_{0}\right)$. From Lemma 2.4.1 it follows that

$$
\sum_{k \geq 1} r\left(f_{k}(0)\right)<\infty \quad \Longleftrightarrow \quad \sum_{k \geq 1} p_{k} k \log k<\infty
$$

Proof.

(of Theorem 2.4.3) Define

$$
\begin{aligned}
g_{n}(s) & :=\mathrm{E}\left(s^{Z_{n}} \mid Z_{n}>0\right)=\frac{f_{n}(s)-f_{n}(0)}{1-f_{n}(0)}=1-\frac{1-f_{n}(s)}{1-f_{n}(0)} \\
& =1-(1-s) \prod_{k=0}^{n-1} \frac{m-r\left(f_{k}(s)\right)}{m-r\left(f_{k}(0)\right)}
\end{aligned}
$$

We have $f_{k}(s) \geq f_{k}(0)$ and r is nonincreasing. \Rightarrow The fraction in the product is greater than or equal to 1 . Thus, $g_{n}(s)$ is nonincreasing in n and, hence, converges to some $g(s)$. Obviously, $g_{n}(0)=0$ and $g_{n}(1)=1$ and, hence, $g(0)=0$ and $g(1)=1$. In order to verify that g is continuous at 1 , it suffices (by the monotonicity of g and since $f_{k}(0) \rightarrow q=1$) to verify that $\lim _{k \rightarrow \infty} g\left(f_{k}(0)\right)=1$. We have
$g_{n}\left(f_{k}(0)\right)=1-\frac{1-f_{n}\left(f_{k}(0)\right)}{1-f_{n}(0)}=1-\frac{1-f_{k}\left(f_{n}(0)\right)}{1-f_{n}(0)} \rightarrow 1-m^{k}, \quad n \rightarrow \infty$.

Thus, $g\left(f_{k}(0)\right)=1-m^{k}$ and hence $\lim _{k \rightarrow \infty} g\left(f_{k}(0)\right)=\lim _{k \rightarrow \infty}\left(1-m^{k}\right)=1$. Therefore, $g(1-)=1$, so g is continuous at 1 . By the continuity theorem for pgf's, all the limits

$$
b_{k}:=\lim _{n \rightarrow \infty} P\left(Z_{n}=k \mid Z_{n}>0\right), \quad k \in \mathbb{N}
$$

exist and g is as well a pgf of the form $g(s)=\sum_{k \geq 1} b_{k} s^{k}$. It follows that

$$
\begin{aligned}
& \sum_{k \geq 1} k b_{k}=g^{\prime}(1-)=\lim _{k \rightarrow \infty} \frac{1-g\left(f_{k}(0)\right)}{1-f_{k}(0)}=\lim _{k \rightarrow \infty} \frac{m^{k}}{1-f_{k}(0)} \stackrel{\text { Thm.2.4.2 }}{=} \frac{1}{\varphi(0)} \\
& \text { and } g_{n} \circ f=1-\frac{1-f_{n+1}}{1-f_{n}(0)}=1-\frac{1-f_{n+1}}{1-f_{n+1}(0)} \frac{1-f\left(f_{n}(0)\right)}{1-f_{n}(0)} .
\end{aligned}
$$

Letting $n \rightarrow \infty$ yields $g \circ f=1-(1-g) m$.

2.5 Supercritical case

Given. $\left(Z_{n}\right)_{n \in \mathbb{N}_{0}}$ GWP with reproduction r.v. Z_{1}, where $m:=\mathrm{E}\left(Z_{1}\right) \in$ $(1, \infty)$ and $\sigma^{2}:=\operatorname{Var}\left(Z_{1}\right) \in(0, \infty] . q:=P\left(Z_{n} \rightarrow 0\right)$ (extinction probability)

2.5.1 Theorem (Convergence Theorem for Supercritical GWPs)

Under the above assumptions there exist positive numbers k_{1}, k_{2}, \ldots such that $W_{n}:=k_{n} Z_{n}$ converges as $n \rightarrow \infty$ almost surely to a non-degenerate nonnegative real r.v. W. Moreover, $P(W=0)=q$.

If $a \in[0,1 / m)$ then $a^{n} Z_{n} \rightarrow 0$ a.s..
If $a \in(1 / m, \infty)$ then $a^{n} Z_{n} \rightarrow Z_{\infty}$ a.s., where $Z_{\infty}(\omega):=0$ for $\omega \in\left\{Z_{n} \rightarrow 0\right\}$ and $Z_{\infty}(\omega):=\infty$ for $\omega \in\left\{Z_{n} \rightarrow \infty\right\}$.
If $\mathrm{E}\left(Z_{1} \log Z_{1}\right)<\infty$ then one can choose $k_{n}:=m^{-n}$.
If $\mathrm{E}\left(Z_{1} \log Z_{1}\right)=\infty$ then $m^{-n} Z_{n} \rightarrow 0$ a.s. as $n \rightarrow \infty$.

Rem.

The numbers $k_{n}, n \in \mathbb{N}$, are called Seneta constants (Seneta, 1968). In particular, for $\mathrm{E}\left(Z_{1} \log Z_{1}\right)<\infty$ and $k_{n}=m^{-n}$, one speaks of the Theorem of Kesten and Stigum (1966). Heyde (1970) has also provided important contributions to the convergence properties of supercritical GWPs.

2.5.2 Theorem (Characterization of the limit W)

The LT ψ of W is a solution to the equation

$$
\psi(m u)=(f \circ \psi)(u), \quad u \geq 0
$$

The mean $\mathrm{E}(W)=-\psi^{\prime}(0)$ is finite if and only if $\mathrm{E}\left(Z_{1} \log Z_{1}\right)<\infty$ and in this case there exists exactly one solution ψ of the above equation, which satisfies $\psi(0)=1$ and whose derivative at 0 exists and is equal to a given value.

Recapitulation.

$p_{k}:=P\left(Z_{1}=k\right), k \in \mathbb{N}_{0}$.
$\operatorname{pgf} f$ of $Z_{1}, f(s):=\mathrm{E}\left(s^{Z_{1}}\right)=\sum_{k=0}^{\infty} p_{k} s^{k}, s \in[0,1]$.
Extinction probability $q:=\lim _{n \rightarrow \infty} P\left(Z_{n}=0\right)<1$.
$q=$ smallest fixed point of f in the interval $[0,1]$.

Proof.

(of Theorem 2.5.1) f strictly increasing. $\Rightarrow g:=f^{-1}$ exists.
Define $g_{0}:=\mathrm{id}, g_{n}:=\underbrace{g \circ \cdots \circ g}_{n-\text { times }}, n \in \mathbb{N}$.
g is non-decreasing, concave, differentiable and maps $[q, 1]$ to $[q, 1]$.
Define $X_{n}(s):=\left(g_{n}(s)\right)^{Z_{n}}$ and $\mathcal{F}_{n}:=\mathcal{F}\left(Z_{1}, \ldots, Z_{n}\right), s \in[q, 1], n \in \mathbb{N}_{0}$.
$X_{n}(s)$ is \mathcal{F}_{n}-measurable. Moreover, for $k \in \mathbb{N}_{0}$,

$$
\begin{aligned}
\mathrm{E}\left(X_{n+1}(s) \mid Z_{n}=k\right) & =\mathrm{E}\left(\left(g_{n+1}(s)\right)^{Z_{n+1}} \mid Z_{n}=k\right) \\
& =\mathrm{E}\left(\left(g_{n+1}(s)\right)^{Y_{n 1}+\cdots+Y_{n k}} \mid Z_{n}=k\right) \\
& =\mathrm{E}\left(\left(g_{n+1}(s)\right)^{Y_{n 1}+\cdots+Y_{n k}}\right) \\
& =\mathrm{E}\left(\left(g_{n+1}(s)\right)^{Y_{n 1}}\right) \cdots \mathrm{E}\left(\left(g_{n+1}(s)\right)^{Y_{n k}}\right) \\
& =\left(\mathrm{E}\left(\left(g_{n+1}(s)\right)^{Z_{1}}\right)\right)^{k} \\
& =\left(f\left(g_{n+1}(s)\right)\right)^{k}=\left(g_{n}(s)\right)^{k} .
\end{aligned}
$$

$\Rightarrow \mathrm{E}\left(X_{n+1}(s) \mid Z_{n}\right)=\left(g_{n}(s)\right)^{Z_{n}}=X_{n}(s)$ a.s.
$\Rightarrow \mathrm{E}\left(X_{n+1}(s) \mid \mathcal{F}_{n}\right)=X_{n}(s)$ a.s.
$\Rightarrow\left(X_{n}(s)\right)_{n \in \mathbb{N}_{0}}$ is a nonnegative martingale w.r.t. $F:=\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}_{0}}$.
$\Rightarrow X_{\infty}(s):=\lim _{n \rightarrow \infty} X_{n}(s)$ exists a.s. (martingale convergence theorem)
Clear: $0 \leq X_{\infty}(s) \leq 1$, since $0 \leq X_{n}(s) \leq 1 \forall n \in \mathbb{N}_{0}$.
dominated convergence. $\Rightarrow \mathrm{E}\left(X_{\infty}(s)\right)=\mathrm{E}\left(X_{1}(s)\right)=\mathrm{E}\left(X_{0}(s)\right)=s$ a.s.
$\mathrm{E}\left(X_{n+1}^{2}(s) \mid \mathcal{F}_{n}\right) \geq\left(\mathrm{E}\left(X_{n+1}(s) \mid \mathcal{F}_{n}\right)\right)^{2}=X_{n}^{2}(s)$ a.s.
$\Rightarrow\left(X_{n}^{2}(s)\right)_{n \in \mathbb{N}_{0}}$ submartingale w.r.t. F (again with values in $[0,1]$).
$\Rightarrow \mathrm{E}\left(X_{\infty}^{2}(s)\right) \geq \mathrm{E}\left(X_{1}^{2}(s)\right)>\left(\mathrm{E}\left(X_{1}(s)\right)\right)^{2}$, since Z_{1} is non-degenerate.
$\Rightarrow \operatorname{Var}\left(X_{\infty}(s)\right) \geq \operatorname{Var}\left(X_{1}(s)\right)>0$.

Define $c_{n}(s):=-\log g_{n}(s), Y(s):=-\log X_{\infty}(s)$.
$\Rightarrow c_{n}(s) Z_{n} \xrightarrow{\text { a.s. }} Y(s)$ and $Y(s)$ is non-degenerate, which proves the first part of Theorem 2.5.1, except that it remains to verify that $Y(s)$ is a.s. finite.
$f(s) \leq s$ for $s \in[q, 1] . \Rightarrow g(s) \geq s$ for $s \in[q, 1] . \Rightarrow g_{n} \nearrow g_{\infty}$ for some g_{∞}.
$s=f_{n}\left(g_{n}(s)\right) \leq f_{n}\left(g_{\infty}(s)\right) \rightarrow q$, if $g_{\infty}(s)<1 . \Rightarrow g_{\infty}(s)=1$ for $s>q$.
Taylor expansion of f around 1 (as in the critical case). $\Rightarrow 1-f(s)=$ $(m-r(s))(1-s)$.
Replacing $s \in(q, 1)$ by $g(s)$ yields

$$
\frac{1-g(s)}{1-s}=\frac{1}{m-r(g(s))}=\frac{1}{m} \frac{1}{1-\frac{r(g(s))}{m}}
$$

Repeating this and taking products. \Rightarrow

$$
\begin{equation*}
m^{n}\left(1-g_{n}(s)\right)=\frac{1-s}{\prod_{k=1}^{n}\left(1-\frac{r\left(g_{k}(s)\right)}{m}\right)} \tag{*}
\end{equation*}
$$

This tells us something on $c_{n}(s)$, since $-\log x \sim 1-x$ for $x \rightarrow 1$. In particular

$$
\frac{c_{n}(s)}{c_{n-1}(s)} \sim \frac{1-g_{n}(s)}{1-g_{n-1}(s)}=\frac{1}{m} \frac{m^{n}\left(1-g_{n}(s)\right)}{m^{n-1}\left(1-g_{n-1}(s)\right)}=\frac{1}{m} \frac{1}{1-\frac{r\left(g_{n}(s)\right)}{m}} \sim \frac{1}{m}
$$

since $g_{n}(s) \rightarrow g_{\infty}(s)=1$ and $r(1-)=0$. Now use this to verify that $Y(s):=$ $\lim _{n \rightarrow \infty} c_{n}(s) Z_{n}$ is a.s. finite.
Again, we have, with the notation $P\left(A \mid Z_{1}\right):=\mathrm{E}\left(1_{A} \mid Z_{1}\right):=\mathrm{E}\left(1_{A} \mid \mathcal{F}\left(Z_{1}\right)\right)$

$$
\begin{aligned}
& P(Y(s)<\infty)= \mathrm{E}\left(P\left(Y(s)<\infty \mid Z_{1}\right)\right) \\
&= \mathrm{E}\left(P\left(\lim _{n \rightarrow \infty} c_{n}(s) Z_{n}<\infty \mid Z_{1}\right)\right) \\
& \stackrel{(+)}{=} \mathrm{E}\left(\left(P\left(\lim _{n \rightarrow \infty} c_{n}(s) Z_{n-1}<\infty\right)\right)^{Z_{1}}\right) \quad((+) \text { follows from } \\
& \text { the branching property, see Appendix 1) } \\
&= \mathrm{E}\left(\left(P\left(\lim _{n \rightarrow \infty} \frac{c_{n}(s)}{c_{n-1}(s)} c_{n-1}(s) Z_{n-1}<\infty\right)\right)^{Z_{1}}\right) \\
&= \mathrm{E}\left(\left(P\left(\frac{Y(s)}{m}<\infty\right)\right)^{Z_{1}}\right) \\
&= \mathrm{E}\left((P(Y(s)<\infty))^{Z_{1}}\right)=f(P(Y(s)<\infty))
\end{aligned}
$$

Analogous: $P(Y(s)=0)=f(P(Y(s)=0))$.
\Rightarrow The probabilities $P(Y(s)<\infty)$ and $P(Y(s)=0)$ are both fixed points of f and can hence only be equal to q or to $1 . Y(s)$ is non-degenerate. \Rightarrow $P(Y(s)=0)=q$.

$$
s=\mathrm{E}\left(X_{\infty}(s)\right)=\mathrm{E}\left(e^{-Y(s)}\right) \leq P(Y(s)<\infty)
$$

$\Rightarrow P(Y(s)<\infty)=1$ for $s>q$. We have

$$
m^{n} c_{n}(s) \nrightarrow \infty \stackrel{(*)}{\Longleftrightarrow} \prod_{n=1}^{\infty}\left(1-\frac{r\left(g_{n}(s)\right)}{m}\right)>0 \Longleftrightarrow \sum_{n=1}^{\infty} r\left(g_{n}(s)\right)<\infty
$$

Choose $s_{0} \in(q, 1)$ such that $m_{0}:=f^{\prime}\left(s_{0}\right)>1$ and k such that $g_{k}(s) \geq s_{0}$. Since

$$
m_{0}^{n}(1-s) \leq 1-f_{n}(s) \leq m^{n}(1-s) \forall s \in\left[s_{0}, 1\right],
$$

it follows that

$$
1-m_{0}^{-(n-k)}\left(1-g_{k}(s)\right) \leq g_{n}(s) \leq 1-m^{-n}(1-s)
$$

By the comparison lemma,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} m^{n} c_{n}(s)<\infty . \Longleftrightarrow \mathrm{E}\left(Z_{1} \log Z_{1}\right)<\infty \tag{**}
\end{equation*}
$$

If $\mathrm{E}\left(Z_{1} \log Z_{1}\right)<\infty$, then we can hence choose $k_{n}:=m^{-n}$, since then $k_{n} Z_{n}=$ $\frac{c_{n}(s) Z_{n}}{m^{n} c_{n}(s)}$ converges a.s..
If $\mathrm{E}\left(Z_{1} \log Z_{1}\right)=\infty$, then $m^{-n} Z_{n}=\frac{c_{n}(s) Z_{n}}{m^{n} c_{n}(s)} \rightarrow 0$ a.s..
If $a<1 / m$, then always $a^{n} Z_{n}=\frac{(a m)^{n}}{m^{n} c_{n}(s)} c_{n}(s) Z_{n} \rightarrow 0$ a.s..
Assume now that $a \in(1 / m, \infty)$. Then,

$$
\frac{c_{n}(s)}{a^{n}} \sim \frac{1-g_{n}(s)}{a^{n}} \stackrel{(*)}{=} \frac{1-s}{\prod_{k=1}^{n} a\left(m-r\left(g_{k}(s)\right)\right)}
$$

and this expression has to converge to 0 for $s \in(q, 1)$, since

$$
1=m-r(q) \leq m-r\left(g_{k}(s)\right) \rightarrow m .
$$

Therefore,

$$
a^{n} Z_{n}=\frac{a^{n}}{c_{n}(s)} c_{n}(s) Z_{n} \rightarrow \begin{cases}0 & \text { if } Z_{n} \rightarrow 0 \\ \infty & \text { if } Z_{n} \rightarrow \infty\end{cases}
$$

Appendix 1 to (+): We have

$$
\left\{\lim _{n \rightarrow \infty} c_{n}(s) Z_{n}<\infty\right\}=\left\{\left(Z_{n}\right)_{n>1} \in A_{s}\right\}
$$

where

$$
A_{s}:=\left\{a=\left(a_{n}\right)_{n>1} \in \mathbb{N}_{0}^{\infty} \mid \text { The sequence }\left(c_{n}(s) a_{n}\right)_{n>1} \text { converges in } \mathbb{R}\right\} .
$$

For $n>1$ let $\pi_{n}: \mathbb{N}_{0}^{\infty} \rightarrow \mathbb{N}_{0}$ denote the projection to the n-th component, i.e. $\pi_{n}(a)=a_{n}$ for all $n>1$ and $a=\left(a_{n}\right)_{n>1} \in \mathbb{N}_{0}^{\infty}$. Further, let $\mathcal{G}:=\mathcal{F}\left(\pi_{n}, n>\right.$ 1) denote the product- σ-algebra. Then,

$$
\begin{aligned}
A_{s} & =\left\{a=\left(a_{n}\right)_{n>1} \in \mathbb{N}_{0}^{\infty} \mid\left(c_{n}(s) a_{n}\right)_{n>1} \text { is a Cauchy-sequence in } \mathbb{R}\right\} \\
& =\bigcap_{N \in \mathbb{N}} \bigcup_{n_{0} \in \mathbb{N}} \bigcap_{i, j>n_{0}}\left\{a=\left(a_{n}\right)_{n>1} \in \mathbb{N}_{0}^{\infty}| | c_{i}(s) \pi_{i}(a)-c_{j}(s) \pi_{j}(a) \left\lvert\,<\frac{1}{N}\right.\right\} \\
& =\bigcap_{N \in \mathbb{N}} \bigcup_{n_{0} \in \mathbb{N}} \bigcap_{i, j>n_{0}}\left(c_{i}(s) \pi_{i}-c_{j}(s) \pi_{j}\right)^{-1}\left(\left(-\frac{1}{N}, \frac{1}{N}\right)\right) \in \mathcal{G},
\end{aligned}
$$

since, with π_{i} and π_{j}, also the map $c_{i}(s) \pi_{i}-c_{j}(s) \pi_{j}: \mathbb{N}_{0}^{\infty} \rightarrow \mathbb{R}$ is \mathcal{G} - \mathcal{B} measurable.
Now, let $k \in \mathbb{N}_{0}$ and let $\left(Z_{n}^{(j)}\right)_{n \in \mathbb{N}_{0}}, j \in\{1, \ldots, k\}$, be independent GWPs, each distributed as $\left(Z_{n}\right)_{n \in \mathbb{N}_{0}}$. Define $\widetilde{Z}_{n}:=\sum_{j=1}^{k} Z_{n}^{(j)}$. Then,

$$
\begin{aligned}
& P\left(\lim _{n \rightarrow \infty} c_{n}(s) Z_{n}<\infty \mid Z_{1}=k\right)=P\left(\left(Z_{n}\right)_{n>1} \in A_{s} \mid Z_{1}=k\right) \\
& \quad=P\left(\left(\widetilde{Z}_{n}\right)_{n \in \mathbb{N}} \in A_{s}\right) \quad \text { (branching property, see before) } \\
& \quad=P\left(\lim _{n \rightarrow \infty} c_{n}(s) \widetilde{Z}_{n-1}<\infty\right)=P\left(\sum_{j=1}^{k} \lim _{n \rightarrow \infty} c_{n}(s) Z_{n-1}^{(j)}<\infty\right) \\
& \quad=P\left(\bigcap_{j=1}^{k}\left\{\lim _{n \rightarrow \infty} c_{n}(s) Z_{n-1}^{(j)}<\infty\right\}\right)=\left(P\left(\lim _{n \rightarrow \infty} c_{n}(s) Z_{n-1}<\infty\right)\right)^{k} .
\end{aligned}
$$

Therefore,

$$
P\left(\lim _{n \rightarrow \infty} c_{n}(s) Z_{n}<\infty \mid Z_{1}\right)=\left(P\left(\lim _{n \rightarrow \infty} c_{n}(s) Z_{n-1}<\infty\right)\right)^{Z_{1}} \quad \text { a.s. }
$$

and taking the mean yields $(+)$.

Proof.

(of Theorem 2.5.2) Let $s \in(q, 1)$. Known (from the previous proof):

$$
\begin{aligned}
\frac{c_{n+1}(s)}{c_{n}(s)} \rightarrow \frac{1}{m} . & \text { With } n \rightarrow \infty \text { it follows for } u \geq 0 \\
\psi(m u) & =\mathrm{E}\left(e^{-m u Y(s)}\right) \\
& \leftarrow \mathrm{E}\left(e^{-m u c_{n+1}(s) Z_{n+1}}\right) \\
& =\mathrm{E}\left(\mathrm{E}\left(e^{-m u c_{n+1}(s) Z_{n+1}} \mid Z_{1}\right)\right) \\
& =\mathrm{E}\left(\left(\mathrm{E}\left(e^{-u m\left(\frac{c_{n+1}(s)}{c_{n}(s)} c_{n}(s) Z_{n}\right.}\right)\right)^{Z_{1}}\right)
\end{aligned}
$$

(follows from the branching property, see Theorem 2.1.6 and Corollary 2.1.7)

$$
\rightarrow \quad f(\psi(u)),
$$

where the theorem of dominated convergence was used several times.
The substitution $u \mapsto u / m$ and an application of $g:=f^{-1}$ yields $\psi(u / m)=$ $g(\psi(u))$. Since $\psi(u) \geq \lim _{u \rightarrow \infty} \psi(u)=\lim _{u \rightarrow \infty} \mathrm{E}\left(e^{-u Y(s)}\right)=P(Y(s)=0)=q$ one can iterate this to

$$
1-\psi\left(u / m^{n}\right)=1-g_{n}(\psi(u))=O\left(m^{-n}\right) \stackrel{(* *)}{\Longleftrightarrow} \mathrm{E}\left(Z_{1} \log Z_{1}\right)<\infty .
$$

ψ convex. \Rightarrow The map $h \mapsto \frac{1-\psi(h)}{h}$ is non-increasing on $(0, \infty) . \Rightarrow$ The lefthand side above is equivalent to $\frac{1-\psi(h)}{h}=O(1)$, i.e. equivalent to the existence of the limit $\lim _{h \rightarrow 0} \frac{1-\psi(h)}{h}<\infty$, i.e. equivalent to the property, that $-\psi^{\prime}(0)$ exists and is finite. This is well-known (see Appendix 2) to be equivalent to $\mathrm{E}(Y(s))<\infty$ and in this case the equality $\mathrm{E}(Y(s))=-\psi^{\prime}(0)$ holds. Therefore, the second assertion follows.
To prove the uniqueness statement let ψ and ϕ be two solutions with $\psi(0)=$ $\phi(0)$ finite and $\psi^{\prime}(0)=\phi^{\prime}(0)$ finite. Then, for any $u>0$

$$
\begin{aligned}
|\psi(u)-\phi(u)| & =\mid f(\psi(u / m))-f(\phi(u / m)|\leq m| \psi(u / m)-\phi(u / m) \mid \\
& \leq \cdots \leq m^{n}\left|\psi\left(u / m^{n}\right)-\phi\left(u / m^{n}\right)\right| \\
& =u\left|\frac{\psi\left(u / m^{n}\right)-\psi(0)-\left(\phi\left(u / m^{n}\right)-\phi(0)\right)}{u / m^{n}}\right| \\
& \rightarrow u\left|\psi^{\prime}(0)-\phi^{\prime}(0)\right|=0 .
\end{aligned}
$$

Appendix 2

2.5.3 Lemma

Let X be a nonnegative real r.v. and $\psi:[0, \infty) \rightarrow(0,1]$ the $L T$ of X. Then, the mean $\mathrm{E}(X)$ is finite if and only if the derivative $\psi^{\prime}(0)$ of ψ at 0 (in \mathbb{R}) exists. In this case, $\mathrm{E}(X)=-\psi^{\prime}(0)$.

Proof.

${ }^{\prime} \Rightarrow$ ': Let $\mathrm{E}(X)<\infty$. Define $f:[0, \infty) \rightarrow[0, \infty)$ via $f(u):=\mathrm{E}\left(X e^{-u X}\right)$ for all $u \in[0, \infty)$. Then, obviously, $-\psi$ is a antiderivative of f. By the mean value theorem there exists for each $h>0$ a mean-value $\xi \in[0, h]$ with $1-\psi(h)=-\psi(h)-(-\psi(0))=\int_{0}^{h} f(u) \mathrm{d} u=f(\xi) h$. Thus,

$$
\frac{1-\psi(h)}{h}=f(\xi)=\mathrm{E}\left(X e^{-\xi X}\right)
$$

Letting $h \rightarrow 0$ (and hence also $\xi \rightarrow 0$) yields (on the left-hand side by the def. of the derivative of ψ in 0 and on the right-hand side by dominated convergence) $-\psi^{\prime}(0)=\mathrm{E}(X)<\infty$.
' \Leftarrow ': Conversely, assume that $-\psi^{\prime}(0)<\infty$. Then, ψ^{\prime} is defined on the full interval $[0, \infty)$ and

$$
-\psi^{\prime}(u)=\mathrm{E}\left(X e^{-u X}\right), \quad u \in[0, \infty)
$$

Letting $u \rightarrow 0$ yields (on the left-hand side by the def. of the right-sided limit and on the right-hand side by dominated convergence)

$$
-\psi^{\prime}(0+)=\mathrm{E}(X)
$$

On the other hand, the map $u \mapsto-\psi^{\prime}(u)=\mathrm{E}\left(X e^{-u X}\right)$ is non-increasing on $[0, \infty)$. Thus,

$$
-\psi^{\prime}(u) \leq-\psi^{\prime}(0)
$$

Letting $u \rightarrow 0$ yields $\mathrm{E}(X)=-\psi^{\prime}(0+) \leq-\psi^{\prime}(0)<\infty$.

[^0]: ${ }^{1}$ Since $m>1$ there exists $k_{0} \in\{2,3, \ldots\}$ with $p_{k_{0}}>0$. For all $s \in(0,1)$ it follows that $f^{\prime \prime}(s)=\sum_{k=2}^{\infty} k(k-1) p_{k} s^{k-2} \geq k_{0}\left(k_{0}-1\right) p_{k_{0}} s^{k_{0}-1}>0$. Hence, f^{\prime} is strictly increasing.

