1 Introduction

Main parts of probability theory deal with stochastic processes.

1.1 Stochastic processes

1.1.1 Def. (Stochastic Process)

Let T be some index set and (S, \mathcal{S}) a measure space. A family $\left(X_{t}\right)_{t \in T}$ is called a stochastic process on a probability space (Ω, \mathcal{F}, P), if each $X_{t}: \Omega \rightarrow S$ is a random variable (r.v.), i.e. $\left\{X_{t} \in B\right\}:=X^{-1}(B):=\left\{\omega \in \Omega: X_{t}(\omega) \in B\right\} \in$ \mathcal{F} for all $B \in \mathcal{S}$ and $t \in T$.

The set S is called the state space of the process. In many cases X_{t} is interpreted as the random state of a stochastic system at 'time' t.
For any selection of finitely many time points $t_{1}, \ldots, t_{k} \in T$, the joint distribution of $\left(X_{t_{1}}, \ldots, X_{t_{k}}\right)$ is called a finite-dimensional distribution of the process $\left(X_{t}\right)_{t \in T}$.
We are often dealing with stochastic processes with $T=\mathbb{N}_{0}:=\{0,1,2, \ldots\}$ and $S \subseteq \mathbb{N}_{0}$.

The two most popular classes of stochastic processes are Markov chains and martingales.

1.2 Markov chains

1.2.1 Def. (Markov Chain)

A stochastic process $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ with discrete state space S is called a Markov chain (MC) if it has Markov property (MP)

$$
P\left(X_{n+1}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right)=P\left(X_{n+1}=j \mid X_{n}=i\right)
$$

for all $n \in \mathbb{N}_{0}, i_{0}, \ldots, i_{n-1}, i, j \in S$ (as long as the conditional probabilities are defined).

The MP states that, if the current state is exactly known $\left(X_{n}=i\right)$, then the additional knowledge of the past $\left(X_{0}, \ldots, X_{n-1}\right)$ does not influence the probabilistic structure of the future $\left(X_{n+1}\right)$.
The probabilities

$$
\pi_{i j}(n):=P\left(X_{n+1}=j \mid X_{n}=i\right), \quad n \in \mathbb{N}_{0}, i, j \in S
$$

are called the transition probabilities of the MC. If all the $\pi_{i j}(n)=\pi_{i j}$ do not depend on n, then $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ is called homogeneous. We mainly deal with homogeneous Markov chains (HMC).

A state $i \in S$ is called absorbing if $\pi_{i i}=1$.
$\Pi:=\left(\pi_{i j}\right)_{i, j \in S}$, the transition matrix of the MC, is a stochastic matrix, i.e. $\pi_{i j} \geq 0$ for all $i, j \in S$ and $\sum_{j \in S} \pi_{i j}=1$ for all $i \in S$.
The n-step transition probabilities $\pi_{i j}^{(n)}:=P\left(X_{m+n}=j \mid X_{m}=i\right), n \in \mathbb{N}_{0}$, $i, j \in S$, satisfy the Chapman-Kolmogorov equations $\pi_{i j}^{(n)}=\sum_{k \in S} \pi_{i k}^{(r)} \pi_{k j}^{(s)}$ for all $n, r, s \in \mathbb{N}_{0}$ with $r+s=n$. It follows that the matrix $\left(\pi_{i j}^{(n)}\right)_{i, j \in S}$ of the n-step transition probabilities coincides with the nth power Π^{n} of Π.
It can be shown that, for each $i \in S$,

$$
P\left(\text { The chain visits } i \text { infinitely often } \mid X_{0}=i\right) \in\{0,1\} .
$$

If this probability is 0 then the state i is called transient, otherwise recurrent. In this lecture we will meet several examples of MCs.

1.3 Martingales

1.3.1 Def. (Martingale)

A family $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ of real-valued r.v. is called a martingale, if the following three conditions hold.
(i) Each X_{n} is integrable, i.e. $\mathrm{E}\left(\left|X_{n}\right|\right)<\infty$ for all $n \in \mathbb{N}_{0}$.
(ii) Each X_{n} is measurable w.r.t. the σ-algebra $\mathcal{F}_{n}:=\mathcal{F}\left(X_{0}, \ldots, X_{n}\right)$.
(iii) $\mathrm{E}\left(1_{D} X_{n+1}\right)=\mathrm{E}\left(1_{D} X_{n}\right)$ for all $n \in \mathbb{N}_{0}$ and $D \in \mathcal{F}_{n}$.

In particular, $\mathrm{E}\left(X_{n}\right)$ does not depend on n. In this sense $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ can be interpreted as a fair game (in the mean).

1.3.2 Exercise

If $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ is a MC with state space $S \subseteq \mathbb{R}$, then (iii) can be replaced by
(iv) $\mathrm{E}\left(X_{n+1} \mid X_{n}=i\right)=i$ for all $n \in \mathbb{N}_{0}$ and $i \in S$ with $P\left(X_{n}=i\right)>0$.

The following convergence theorem is one of the most important results in probability theory.

1.3.3 Theorem

Let $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ be a martingale. If $\sup _{n \in \mathbb{N}_{0}} \mathrm{E}\left(\left|X_{n}\right|\right)<\infty$, then X_{n} converges almost surely as $n \rightarrow \infty$ to an integrable real-valued limiting r.v. X_{∞}.

Proof.

See, for example, Bauer, Probability Theory.

