1 Introduction

Main parts of probability theory deal with stochastic processes.

1.1 Stochastic processes

1.1.1 Def. (Stochastic Process)

Let T be some index set and (S, \mathcal{S}) a measure space. A family $(X_t)_{t\in T}$ is called a <u>stochastic process</u> on a probability space (Ω, \mathcal{F}, P) , if each $X_t : \Omega \to S$ is a random variable (r.v.), i.e. $\{X_t \in B\} := X^{-1}(B) := \{\omega \in \Omega : X_t(\omega) \in B\} \in \mathcal{F}$ for all $B \in \mathcal{S}$ and $t \in T$.

The set S is called the <u>state space</u> of the process. In many cases X_t is interpreted as the random state of a stochastic system at 'time' t.

For any selection of finitely many time points $t_1, \ldots, t_k \in T$, the joint distribution of $(X_{t_1}, \ldots, X_{t_k})$ is called a <u>finite-dimensional distribution</u> of the process $(X_t)_{t \in T}$.

We are often dealing with stochastic processes with $T = \mathbb{N}_0 := \{0, 1, 2, \ldots\}$ and $S \subseteq \mathbb{N}_0$.

The two most popular classes of stochastic processes are Markov chains and martingales.

1.2 Markov chains

1.2.1 Def. (Markov Chain)

A stochastic process $(X_n)_{n \in \mathbb{N}_0}$ with discrete state space S is called a <u>Markov chain</u> (MC) if it has <u>Markov property</u> (MP)

$$P(X_{n+1} = j \mid X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0) = P(X_{n+1} = j \mid X_n = i)$$

for all $n \in \mathbb{N}_0$, $i_0, \ldots, i_{n-1}, i, j \in S$ (as long as the conditional probabilities are defined).

The MP states that, if the current state is exactly known $(X_n = i)$, then the additional knowledge of the past (X_0, \ldots, X_{n-1}) does not influence the probabilistic structure of the future (X_{n+1}) .

The probabilities

$$\pi_{ij}(n) := P(X_{n+1} = j \mid X_n = i), \quad n \in \mathbb{N}_0, i, j \in S,$$

are called the <u>transition probabilities</u> of the MC. If all the $\pi_{ij}(n) = \pi_{ij}$ do not depend on n, then $(X_n)_{n \in \mathbb{N}_0}$ is called <u>homogeneous</u>. We mainly deal with homogeneous Markov chains (HMC).

A state $i \in S$ is called <u>absorbing</u> if $\pi_{ii} = 1$.

 $\Pi := (\pi_{ij})_{i,j\in S}$, the <u>transition matrix</u> of the MC, is a <u>stochastic matrix</u>, i.e. $\pi_{ij} \ge 0$ for all $i, j \in S$ and $\sum_{j\in S} \pi_{ij} = 1$ for all $i \in S$.

The <u>*n*-step transition probabilities</u> $\pi_{ij}^{(n)} := P(X_{m+n} = j | X_m = i), n \in \mathbb{N}_0, i, j \in S$, satisfy the <u>Chapman–Kolmogorov equations</u> $\pi_{ij}^{(n)} = \sum_{k \in S} \pi_{ik}^{(r)} \pi_{kj}^{(s)}$ for all $n, r, s \in \mathbb{N}_0$ with r + s = n. It follows that the matrix $(\pi_{ij}^{(n)})_{i,j \in S}$ of the *n*-step transition probabilities coincides with the *n*th power Π^n of Π .

It can be shown that, for each $i \in S$,

 $P(\text{The chain visits } i \text{ infinitely often } | X_0 = i) \in \{0, 1\}.$

If this probability is 0 then the state i is called <u>transient</u>, otherwise <u>recurrent</u>. In this lecture we will meet several examples of MCs.

1.3 Martingales

1.3.1 Def. (Martingale)

A family $(X_n)_{n \in \mathbb{N}_0}$ of real-valued r.v. is called a <u>martingale</u>, if the following three conditions hold.

- (i) Each X_n is integrable, i.e. $E(|X_n|) < \infty$ for all $n \in \mathbb{N}_0$.
- (ii) Each X_n is measurable w.r.t. the σ -algebra $\mathcal{F}_n := \mathcal{F}(X_0, \ldots, X_n)$.
- (iii) $\mathrm{E}(1_D X_{n+1}) = \mathrm{E}(1_D X_n)$ for all $n \in \mathbb{N}_0$ and $D \in \mathcal{F}_n$.

In particular, $E(X_n)$ does not depend on n. In this sense $(X_n)_{n \in \mathbb{N}_0}$ can be interpreted as a fair game (in the mean).

1.3.2 Exercise

If $(X_n)_{n \in \mathbb{N}_0}$ is a MC with state space $S \subseteq \mathbb{R}$, then (iii) can be replaced by

(iv) $E(X_{n+1} | X_n = i) = i$ for all $n \in \mathbb{N}_0$ and $i \in S$ with $P(X_n = i) > 0$.

The following convergence theorem is one of the most important results in probability theory.

1.3.3 Theorem

Let $(X_n)_{n \in \mathbb{N}_0}$ be a martingale. If $\sup_{n \in \mathbb{N}_0} \mathbb{E}(|X_n|) < \infty$, then X_n converges almost surely as $n \to \infty$ to an integrable real-valued limiting r.v. X_{∞} .

Proof.

See, for example, Bauer, Probability Theory.