THE RATE OF CONVERGENCE
OF THE BLOCK COUNTING PROCESS
OF EXCHANGEABLE COALESCENTS WITH DUST

Martin Möhle, University of Tübingen, Germany

Workshop
Models and Inference in Population Genetics
University of Warwick

December 11 - 13, 2019
Exchangeable coalescents

- Exchangeable coalescents are Markov processes $\Pi = (\Pi_t)_{t \geq 0}$ with state space \mathcal{P}, the set of partitions (equivalence relations) on $\mathbb{N} := \{1, 2, \ldots\}$.

- During each transition, blocks (equivalence classes) merge together. Simultaneous multiple collisions of blocks are allowed.

- Schweinsberg (2000) characterizes exchangeable coalescents via a finite measure Ξ on the infinite simplex

$$\Delta := \{u = (u_1, u_2, \ldots) : u_1 \geq u_2 \geq \cdots \geq 0, \ |u| := \sum_{r \in \mathbb{N}} u_r \leq 1\}.$$

- These processes are therefore also called Ξ-coalescents.

- The subclass of Λ-coalescents is obtained if Ξ is concentrated on $\{u \in \Delta : u_2 = 0\}$. In this case $\Lambda(B) = \Xi(B \times \{0\} \times \{0\} \times \cdots)$ for all Borel sets $B \subseteq [0, 1]$.
An urn model, Kingman’s paintbox

Fix $u = (u_1, u_2, \ldots) \in \Delta$. Note that $|u| := \sum_{r \in \mathbb{N}} u_r \leq 1$. Define $u_0 := 1 - |u|$. Imagine a countable infinite number of boxes having labels $r \in \mathbb{N}_0 := \{0, 1, 2, \ldots\}$.

<table>
<thead>
<tr>
<th>box 0</th>
<th>box 1</th>
<th>box 2</th>
<th>box 3</th>
<th>box 4</th>
<th>box 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>u_0</td>
<td>u_1</td>
<td>u_2</td>
<td>u_3</td>
<td>u_4</td>
</tr>
</tbody>
</table>

Balls are allocated successively to these boxes. It is assumed that every ball goes to box $r \in \mathbb{N}_0$ with probability u_r independently of the other balls.

Let $X_r(i, u)$ be the number of balls in box r after $i \in \mathbb{N}$ balls have been allocated.

Then $(X_0(i, u), X_1(i, u), \ldots)$ has an infinite multinomial distribution with parameters i and (u_0, u_1, u_2, \ldots).
The block counting process

Let \(N_t^{(n)} \) denote the number of blocks of \(\Pi_t^{(n)} \), the restriction of \(\Pi_t \) to a sample of size \(n \).

The block counting process \(N^{(n)} := (N_t^{(n)})_{t \geq 0} \) moves from state \(i \) to state \(j < i \) at the rate

\[
q_{ij} = \Xi(\{0\}) \binom{i}{2} \delta_{j,i-1} + \int_{\Delta} \mathbb{P}(Y(i,u) = j) \nu(du)
\]

where \(\nu(du) := \Xi(du)/(u,u) \) with \((u,u) := \sum_{r \in \mathbb{N}} u_r^2 \) and

\[
Y(i,u) := \text{number of balls in box 0 plus number of other non-empty boxes}
\]

\[
= X_0(i,u) + \sum_{r \in \mathbb{N}} 1\{X_r(i,u) > 0\}.
\]

Remark. Note that \(\mathbb{P}(Y(i,u) = j) = \sum_{k=1}^{j} f_{ijk}(u) \), where

\[
f_{ijk}(u) := \frac{u_0^{i-k}}{(j-k)!} \sum_{i_1,\ldots,i_k \geq 1 \atop i_1+\cdots+i_k = i-j+k} \frac{i!}{i_1! \cdots i_k!} \sum_{1 \leq r_1 < \cdots < r_k} u_{r_1}^{i_1} \cdots u_{r_k}^{i_k}.
\]
The fixation line (Hénard (2015), Gaiser and M. (2016))

For $n \in \mathbb{N}$ and $t \geq 0$ define $L_t^{(n)} := \sup \{k \in \mathbb{N} : N_t^{(k)} \leq n \}$. The fixation line $L_t^{(n)} := (L_t^{(n)})_{t \geq 0}$ moves from state i to state $j > i$ at the rate

$$
\gamma_{ij} = \Xi(\{0\}) \binom{j}{2} \delta_{j,i+1} + \int_\Delta \mathbb{P}(Y(j,u) = i, Y(j + 1, u) = i + 1) \nu(du)
$$

with $Y(., u)$ and ν as before.

Remark. The probability below the integral can be provided explicitly as

$$
\mathbb{P}(Y(j,u) = i, Y(j + 1, u) = i + 1) = \sum_{k=1}^{i} g_{ijk}(u), \text{ where}
$$

$$
g_{ijk}(u) := \frac{u_0^{i-k}}{(i-k)!} \sum_{i_1, \ldots, i_k \geq 1 \atop i_1 + \cdots + i_k = j-i+k} \frac{j!}{i_1! \cdots i_k!} \sum_{1 \leq r_1 < \cdots < r_k} u_{r_1}^{i_1} \cdots u_{r_k}^{i_k} (1 - (u_{r_1} + \cdots + u_{r_k})).\]
Siegmund duality

Let Π be a Ξ-coalescent and let $N^{(n)} = (N_t^{(n)})_{t \geq 0}$ and $L^{(n)} = (L_t^{(n)})_{t \geq 0}$ denote the block counting process and the fixation line of Π respectively.

Theorem 1. (Gaiser and M., 2016)

The block counting process is Siegmund dual to the fixation line, that is

$$\mathbb{P}(N_t^{(i)} \leq j) = \mathbb{P}(L_t^{(j)} \geq i)$$

for all $i, j \geq 1$ and $t \geq 0$.

6
Exchangeable coalescents with dust

Definition. A Ξ-coalescent $\Pi = (\Pi_t)_{t \geq 0}$ has proper frequencies (no dust) if, for all times $t \geq 0$, the frequency S_t of singletons of Π_t satisfies $S_t = 0$ almost surely.

Proposition 1. (Schweinsberg, 2000)

A coalescent Π has dust if and only if $\Xi(\{0\}) = 0$ and
\[
\int_\Delta |u| \nu(du) < \infty,
\]
where $|u| := \sum_{r \in \mathbb{N}} u_r$ and $\nu(du) := \Xi(du)/(u, u)$ with $(u, u) := \sum_{r \in \mathbb{N}} u_r^2$.

Remark. If Π has dust then $Z = (Z_t)_{t \geq 0} := (-\log S_t)_{t \geq 0}$ is a drift-free subordinator (Lévy process with non-decreasing paths) with Laplace exponent
\[
\Phi(q) := \int_\Delta (1 - (1 - |u|)^q) \nu(du), \quad q \geq 0.
\]
Note that $\mathbb{E}(S_t^q) = \mathbb{E}(e^{-qZ_t}) = e^{-t\Phi(q)}, t, q \geq 0$.
Asymptotics for large sample size

Theorem 2. (Gaiser and M., 2016)

Let \(\Pi \) be a \(\Xi \)-coalescent with dust, i.e. \(\Xi(\{0\}) = 0 \) and \(\int_{\Delta} |u| \nu(du) < \infty \). Then the following two assertions hold.

a) As \(n \to \infty \) the scaled block counting process \((N_t^{(n)}/n)_{t \geq 0} \) converges in \(D_{[0,1]}[0, \infty) \) to the frequency of singleton process \(S = (S_t)_{t \geq 0} = (e^{-Z_t})_{t \geq 0} \).

b) As \(n \to \infty \) the scaled fixation line \((L_t^{(n)}/n)_{t \geq 0} \) converges in \(D_{[1,\infty]}[0, \infty) \) to the reciprocal frequency of singleton process \((1/S_t)_{t \geq 0} = (e^{Z_t})_{t \geq 0} \).
Remarks

- Proof of part a) based on the method of moments and some general weak convergence machinery. Proof of part b) uses duality.

- For Ξ-coalescents with dust, both processes $(\log n - \log N_t^{(n)})_{t \geq 0}$ and $(\log L_t^{(n)} - \log n)$ converge in $D_{[0,\infty]}[0,\infty)$ to the drift-free subordinator Z.

- Let Ξ be concentrated on $\Delta^* := \{u \in \Delta : |u| = 1\}$. Then Π has dust if and only if ν is finite. In this case $S_t \overset{d}{=} 1\{T_f > t\}$, where T_f is exponentially distributed with parameter $\nu(\Delta^*)$. Examples are Dirichlet coalescents and Poisson–Dirichlet coalescents.
A Bernstein function

Let \(\Pi \) be a \(\Xi \)-coalescent with dust. For \(q \geq 0 \) define

\[
\tilde{\Phi}(q) := \int_\Delta \sum_{r \in \mathbb{N}} (1 - (1 - u_r)^q) \nu(du) .
\]

Properties:

- In general \(\tilde{\Phi} \) differs from \(\Phi \). For \(\Lambda \)-coalescents \(\tilde{\Phi} \) coincides with \(\Phi \).
- \(\tilde{\Phi}(0) = 0, \tilde{\Phi}(1) = \int_\Delta |u| \nu(du), \Phi(n) \leq \tilde{\Phi}(n) \) for all \(n \in \mathbb{N} \)
- \(\tilde{\Phi} \) is a Bernstein function (infinitely often differentiable on \((0, \infty) \) with \((-1)^{k-1} \tilde{\Phi}^{(k)} \geq 0 \) for all \(k \in \mathbb{N} \) and \(q > 0 \)).
- Lévy–Khintchine representation:

\[
\tilde{\Phi}(q) = \int_{(0,1]} (1 - (1 - x)^q) \tilde{\nu}(dx) ,
\]

where \(\tilde{\nu}(B) := \int_\Delta \sum_{r \in \mathbb{N}} 1_B(u_r) \nu(du) \) for all Borel sets \(B \subseteq (0,1] \).
Rate of convergence

Notation: \(E := [0, 1], E_n := \{ k/n : k \in \{1, \ldots, n\} \}. \)
\[
\pi_n : B(E) \to B(E_n), \pi_n f(x) := f(x) \text{ for } f \in B(E) \text{ and } x \in E_n.
\]

Theorem 3. (Rate of convergence of the block counting process, M., 2019)
Let \(\Pi = (\Pi_t)_{t \geq 0} \) be a \(\Xi \)-coalescent with dust and let \(A_n \) and \(A \) denote the generators of the scaled block counting process \((N_t^{(n)}/n)_{t \geq 0} \) and the frequency of singleton process \((S_t)_{t \geq 0} \) respectively. Then, for all \(n \in \mathbb{N} \) and \(f \in C^2([0, 1]) \),

\[
\|A_n \pi_n f - \pi_n A f\| := \sup_{x \in E_n} |A_n \pi_n f(x) - \pi_n A f(x)| \leq C_f r(n),
\]

where \(C_f := \|f'\| + 2\|f''\| \) and \(r(n) := \frac{\tilde{\Phi}(n)}{n} \).

We call \(r(n) \) the rate function.

Remark: The rate \(r(n) \) in Theorem 3 is optimal.
Sketch of proof

Define $u_0 := 1 - |u|$. Proof of Theorem 3 uses the paintbox representation

$$A_n^\pi_n f(x) - \pi_n Af(x) = \int_\Delta \left(\mathbb{E} \left(f \left(\frac{Y(nx, u)}{n} \right) \right) - f(xu_0) \right) \nu(du),$$

the Taylor expansion

$$f \left(\frac{Y(nx, u)}{n} \right) - f(xu_0) = f'(xu_0)x\tilde{Y} + f''(\xi)x^2\tilde{Y}^2,$$

for some random point ξ taking values between $Y(nx, u)/n$ and xu_0, and the concentration inequality $\mathbb{E}(\tilde{Y}^2) \leq 2\mathbb{E}(\tilde{Y})$, where

$$\tilde{Y} := \tilde{Y}(nx, u) := \frac{Y(nx, u)}{nx} - u_0.$$

Remark. For Λ-coalescents the sharper concentration inequality $\mathbb{E}(\tilde{Y}^2) \leq \mathbb{E}(\tilde{Y})$ holds. We conjecture that this sharper inequality holds for all Ξ-coalescents.
Corollary 1. (Rate of convergence, semigroup version, M., 2019)

In the situation of Theorem 3, let \((T_t^{(n)})_{t \geq 0} \) and \((T_t)_{t \geq 0} \) denote the semigroups of the scaled block counting process and the frequency of singleton process \((S_t)_{t \geq 0} \) respectively. Then, for all \(t \geq 0, n \in \mathbb{N}, \) and \(f \in C^2(E), \)

\[
\|T_t^{(n)} \pi_n f - \pi_n T_t f\| \leq t C_f r(n),
\]

where \(C_f \) is the constant from Theorem 3 and the rate \(r(n) \) is defined as before.
Rate of convergence of the fixation line

Notation: \(F := [1, \infty) \), \(F_n := \{k/n : k \in \{n, n+1, \ldots\}\} \cup \{\infty\} \).

\[\tau_n : B(F') \to B(F_n), \tau_n g(y) := g(y) \text{ for } g \in B(F) \text{ and } y \in F_n. \]

Conjecture. (Rate of convergence of the fixation line; work in progress)

Let \(\Pi \) be a \(\Xi \)-coalescent with dust and let \(B_n \) and \(B \) denote the generators of the scaled fixation line \((L_t^{(n)}/n)_{t \geq 0} \) and the reciprocal frequency of singleton process \((1/S_t)_{t \geq 0} \) respectively. Then, for all \(n \in \mathbb{N} \) and \(g \in C^2_c([1, \infty]) \),

\[
\|B_n\tau_n g - \tau_n B g\| := \sup_{y \in F_n} |B_n\tau_n g(y) - \tau_n B g(y)| \leq D_g r(n)
\]

with rate \(r(n) \) as before and constant \(D_g := \|f'\| + 2\|f''\| \), where \(f(x) := g(1/x) \).

Remark. Conjecture holds for \(\Lambda \)-coalescents, even with improved constant \(D_g := \|f'\| + \|f''\| \). Some technical gaps in the proof for the \(\Xi \)-coalescent.
Example 1: Dirichlet coalescent

Let \((X_1, \ldots, X_N) \overset{d}{=} D_N(\alpha)\) be symmetric Dirichlet distributed with parameters \(N \in \mathbb{N}\) and \(\alpha > 0\).

Let \(X_{(1)} \geq \cdots \geq X_{(N)}\) denote the order statistics.

\(\nu := \text{distribution of} \ (X_{(1)}, \ldots, X_{(N)}, 0, 0, \ldots)\).

The associated exchangeable coalescent is called the Dirichlet coalescent.

This coalescent neither comes down from infinity nor stays infinite, since
\[
\mathbb{P}(N_t = \infty) = \mathbb{P}(T_f > t) = e^{-t} \text{ for all } t \geq 0.
\]
Dirichlet coalescent (continued)

Notation. $[x|y]_n := \prod_{k=0}^{n-1} (x + ky)$, $(x|y)_n := \prod_{k=0}^{n-1} (x - ky)$,

$[x]_n := [x|1]_n$, $(x)_n := (x|1)_n$

Rates of the block counting process:

\[q_{ij} = \frac{(N\alpha|\alpha)_j}{[N\alpha]_i} S_\alpha(i, j), j < i \]

Rates of the fixation line:

\[\gamma_{ij} = \frac{(N\alpha|\alpha)_{i+1}}{[N\alpha]_{j+1}} S_\alpha(j, i), i < j \]

$S_\alpha(i, j) := S(i, j; -1, \alpha, 0)$ is the generalized Stirling number as defined in Hsu and Shiue (1998).
Define $\Delta_N := \{u \in \Delta : u_1 + \cdots + u_N = 1\}$. Then

$$\tilde{\Phi}(q) = \int_{\Delta_N} \sum_{r=1}^{N} (1 - (1 - u_r)^q) \nu(du)$$

$$= \int_{\mathbb{R}^N} \sum_{r=1}^{N} (1 - (1 - u_r)^q) D_N(\alpha)(du_1, \ldots, du_N)$$

$$= N \mathbb{E}(1 - (1 - X_1)^q),$$

If $N = 1$ then $X_1 \equiv 1$ and $\tilde{\Phi} = \Phi$. If $N > 1$ then X_1 is beta distributed with parameters α and $N \alpha - \alpha$ and

$$\tilde{\Phi}(q) = N \left(1 - \frac{\Gamma(N\alpha)\Gamma(N\alpha - \alpha + q)}{\Gamma(N\alpha - \alpha)\Gamma(N\alpha + q)}\right) \sim N, \quad q \to \infty,$$

differs from $\Phi(q) = 1, q > 0$.

Dirichlet coalescent (continued)
Example 2: Poisson–Dirichlet coalescent
(Sagitov (2003), M. (2010), Gaiser and M. (2016))

This is the coalescent where ν is the Poisson–Dirichlet distribution with parameters $0 \leq \alpha < 1$ and $\theta > -\alpha$.

Rates of the block counting process:

$$ q_{ij} = c_{j,\alpha,\theta} \frac{\Gamma(\theta + \alpha j)}{\Gamma(\theta + i)} s_\alpha(i, j), \ j < i $$

Normalizing constant: $c_{j,\alpha,\theta} := \prod_{k=1}^{j} \frac{\Gamma(\theta + 1 + (k - 1)\alpha)}{\Gamma(\theta + k\alpha)}$

Rates of the fixation line:

$$ \gamma_{ij} = c_{i,\alpha,\theta} \frac{\Gamma(\theta + \alpha i + 1)}{\Gamma(\theta + j + 1)} s_\alpha(j, i), \ i < j $$

$s_\alpha(i, j) := S(i, j; -1, -\alpha, 0)$ is the generalized absolute Stirling number of the first kind as defined in Hsu and Shiue (1998).
Poisson–Dirichlet coalescent (continued)

By a result of Handa (2009), applied with \(f(x) := 1 - (1 - x)^q \),

\[
\tilde{\Phi}(q) = \int_{\Delta} \sum_{r \in \mathbb{N}} f(u_r) \nu(du) = \int_{\mathbb{R}} (1 - (1 - x)^q) \mu_1(dx), \quad q \geq 0,
\]

where \(\mu_1 \) denotes the correlation measure associated with the Poisson–Dirichlet coalescent. The density of \(\mu_1 \) is explicitly known (see Handa, 2009), and it follows that

\[
\tilde{\Phi}(q) = c_{1,\alpha,\theta} \int_0^1 (1 - (1 - x)^q)x^{-\alpha-1}(1 - x)^{\theta+\alpha-1}dx, \quad q \geq 0,
\]

with normalizing constant \(c_{1,\alpha,\theta} := B(1 - \alpha, \theta + \alpha) \). For \(\alpha > 0 \) this leads to

\[
\tilde{\Phi}(q) = \frac{\theta + q \Gamma(\theta + \alpha + q)\Gamma(\theta + 1)}{\alpha \Gamma(\theta + 1 + q)\Gamma(\theta + \alpha)} - \frac{\theta}{\alpha} \sim \frac{\Gamma(\theta + 1) \; q^\alpha}{\Gamma(\theta + \alpha) \; \alpha}, \quad q \to \infty.
\]

For \(\alpha = 0 \) it follows that \(\tilde{\Phi}(q) = \theta(\Psi(q + \theta) - \Psi(\theta)) \sim \theta \log q \) as \(q \to \infty \), where \(\Psi := \Gamma'/\Gamma \). The associated subordinator is the \(\Psi \)-subordinator. In all cases \(\tilde{\Phi} \) differs from \(\Phi \).
Example 3: A symmetric coalescent

Let \((m_k)_{k \in \mathbb{N}}\) be a sequence of non-negative real numbers satisfying \(\sum_{k \in \mathbb{N}} m_k/k < \infty\). Suppose \(\nu\) assigns for each \(k \in \mathbb{N}\) mass \(m_k\) to
\[u^{(k)} := (1/k, \ldots, 1/k, 0, 0, \ldots) \in \Delta^*\].
This coalescent occurs in González Casanova, Miró Pina and Siri-Jégousse (2019).

Rates of the block counting process:
\[q_{ij} = S(i, j) \sum_{k \in \mathbb{N}} \frac{(k)^j}{k^i} m_k, \; j < i\]

Rates of the fixation line:
\[\gamma_{ij} = S(j, i) \sum_{k \in \mathbb{N}} \frac{(k)_{i+1}}{k^{j+1}} m_k, \; i < j\]

\([x]^i := x(x - 1) \cdots (x - i + 1), \; S(., .) \) are the Stirling number of the second kind]
A symmetric coalescent (continued)

The symmetric coalescent has dust if and only if $\nu(\Delta) = \sum_{k \in \mathbb{N}} m_k < \infty$. In this case

$$\tilde{\Phi}(q) = \sum_{k \in \mathbb{N}} km_k \left(1 - \left(1 - \frac{1}{k}\right)^q\right), \quad q \geq 0.$$

For example, if $m_k = k^{-\alpha}$ with $\alpha > 1$, then, as $q \to \infty$,

$$\tilde{\Phi}(q) \sim \begin{cases} \zeta(\alpha - 1) & \text{if } \alpha > 2, \\ \log q & \text{if } \alpha = 2, \\ -\Gamma(\alpha - 2)q^{2-\alpha} & \text{if } \alpha \in (1, 2). \end{cases}$$

$$r(n) = O\left(\frac{1}{n}\right) \text{ for } \alpha > 2, \quad r(n) = O\left(\frac{\log n}{n}\right) \text{ for } \alpha = 2, \quad r(n) = O\left(\frac{1}{n^{\alpha-1}}\right) \text{ for } \alpha \in (1, 2).$$
Thank you very much for your attention!
References I

References II

