ISMP, Bordeaux, France, 2018

Non-smooth Non-convex Bregman Minimization: Unification and new Algorithms

joint work: Jalal Fadili

Facts about Gradient Descent

- Smooth optimization problem: (f continuously differentiable)

$$
\min _{x \in \mathbb{R}^{N}} f(x)
$$

- Update step with step size $\tau>0$:

$$
x^{(k+1)}=x^{(k)}-\tau \nabla f\left(x^{(k)}\right) .
$$

- Step size selection:
- f continuously differentiable \Rightarrow line-search is required.
- ∇f Lipschitz continuous \Rightarrow feasible range of step sizes can be computed.

Facts about Gradient Descent

- Equivalent to minimizing a quadratic function:

$$
x^{(k+1)}=\underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} f\left(x^{(k)}\right)+\left\langle\nabla f\left(x^{(k)}\right), x-x^{(k)}\right\rangle+\frac{1}{2 \tau}\left|x-x^{(k)}\right|^{2} .
$$

- Optimality condition:

$$
\begin{aligned}
& \nabla f\left(x^{(k)}\right)+\frac{1}{\tau}\left(x-x^{(k)}\right)=0 \\
\Leftrightarrow & x=x^{(k)}-\tau \nabla f\left(x^{(k)}\right)
\end{aligned}
$$

Facts about Gradient Descent

Another point of view:

- Minimization of a linear function

$$
f_{x^{(k)}}(x)=f\left(x^{(k)}\right)+\left\langle\nabla f\left(x^{(k)}\right), x-x^{(k)}\right\rangle
$$

with quadratic penalty on the distance to $x^{(k)}$:

$$
D_{h}\left(x, x^{(k)}\right)=\frac{1}{2 \tau}\left|x-x^{(k)}\right|^{2} .
$$

- Update step:

$$
x^{(k+1)}=\underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} f_{x^{(k)}}(x)+D_{h}\left(x, x^{(k)}\right)
$$

Facts about Gradient Descent

Generalization to non-smooth functions f :

- Minimization of a convex model function

$$
f_{x^{(k)}}(x) \text { with }\left|f(x)-f_{x^{(k)}}(x)\right| \leq \underbrace{\omega\left(\left|x-x^{(k)}\right|\right)}_{\text {growth function }}
$$

with quadratic penalty on the distance to $x^{(k)}$:

$$
D_{h}\left(x, x^{(k)}\right)=\frac{1}{2 \tau}\left|x-x^{(k)}\right|^{2} .
$$

- Update step:

$$
x^{(k+1)}=\underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} f_{x^{(k)}}(x)+D_{h}\left(x, x^{(k)}\right)
$$

Facts about Gradient Descent

Generalization to non-smooth functions f :

- Minimization of a convex model function

$$
f_{x^{(k)}}(x) \text { with }\left|f(x)-f_{x^{(k)}}(x)\right| \leq \underbrace{\omega\left(\left|x-x^{(k)}\right|\right)}_{\text {growth function }}
$$

with penalty on the distance to $x^{(k)}$:

$$
D_{h}\left(x, x^{(k)}\right) .
$$

- Update step:

$$
x^{(k+1)}=\underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} f_{x^{(k)}}(x)+D_{h}\left(x, x^{(k)}\right)
$$

Model assumption / Growth function

Key Contribution:

The growth function (approximation quality) and the distance function determine the convergence properties.

Implementable Algorithmic Framework:

$$
\tilde{x}^{(k)}=\underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} f_{x^{(k)}}(x)+D_{h}\left(x, x^{(k)}\right) .
$$

Find $\eta^{(k)}>0$ using (inexact) line-search along

$$
x^{(k+1)}=x^{(k)}+\eta^{(k)}\left(\tilde{x}^{(k)}-x^{(k)}\right)
$$

to satisfy an Armijo-like condition along.

Outline

PART 1: Examples for Model Functions

- Gradient Descent, Forward-Backward Splitting, ProxDescent
- Presented with Euclidean distance measure.
- However any distance measure from PART 2 can be used.

PART 2: Examples for Distance Functions

- Bregman distance generated by Legendre functions.

PART 3: Convergence Analysis

- Subsequential convergence to a stationary point.

PART 4: Numerical Examples

- Robust non-linear regression.
- Image deblurring under Poisson noise.

Measuring the Approximation Quality

Model assumption: $f_{\bar{x}}$ convex and

$$
\left|f(x)-f_{\bar{x}}(x)\right| \leq \omega(|x-\bar{x}|)
$$

Measuring the Approximation Quality:

(i) growth function: $\omega(0)=\omega_{+}^{\prime}(0)=0$.
(ii) proper growth function: $\lim _{t \searrow 0} \omega_{+}^{\prime}(t)=\lim _{t \not 0} \omega(t) / \omega_{+}^{\prime}(t)=0$.
(iii) global growth function (does not require line-search).

Example of a proper growth function: $\omega(t)=t^{1+\alpha}$ with $\alpha>0$.

Forward-Backward Splitting

- Optimization problem:

$$
\min _{x \in \mathbb{R}^{N}} \underbrace{f_{0}(x)}_{\substack{\text { non-smooth } \\
\text { convex }}}+\underbrace{f_{1}(x)}_{\begin{array}{c}
\text { smooth } \\
\text { non-convex }
\end{array}}
$$

- Model function:

$$
f_{\bar{x}}(x)=f_{0}(x)+f_{1}(\bar{x})+\left\langle x-\bar{x}, \nabla f_{1}(\bar{x})\right\rangle
$$

- Model assumption/error:

$$
\left|f(x)-f_{\bar{x}}(x)\right|=\left|f_{1}(x)-f_{1}(\bar{x})-\left\langle x-\bar{x}, \nabla f_{1}(\bar{x})\right\rangle\right| \leq \omega(|x-\bar{x}|)
$$

- FBS case was considered by [Bonettini et al., 2016].

Forward-Backward Splitting

- Update step: (Forward-Backward Splitting)

$$
\begin{aligned}
\tilde{x}^{(k)} & =\underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} f_{0}(x)+f_{1}\left(x^{(k)}\right)+\left\langle x-x^{(k)}, \nabla f_{1}\left(x^{(k)}\right)\right\rangle+\frac{1}{2 \tau}\left|x-x^{(k)}\right|^{2} \\
& =\operatorname{prox}_{\tau f_{0}}\left(x^{(k)}-\tau \nabla f_{1}\left(x^{(k)}\right)\right)
\end{aligned}
$$

- Example: (Constrained smooth optimization)

$$
\min _{x} f_{1}(x) \quad \text { s.t. } x \in C
$$

Update step: (Projected gradient descent)

$$
\tilde{x}^{(k)}=\operatorname{proj}_{C}\left(x^{(k)}-\tau \nabla f_{1}\left(x^{(k)}\right)\right)
$$

Forward-Backward Splitting

- Update step: (Forward-Backward Splitting)

$$
\begin{aligned}
\tilde{x}^{(k)} & =\underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} f_{0}(x)+f_{1}\left(x^{(k)}\right)+\left\langle x-x^{(k)}, \nabla f_{1}\left(x^{(k)}\right)\right\rangle+D_{h}\left(x, x^{(k)}\right) \\
& =\operatorname{prox}_{\tau f_{0}}\left(x^{(k)}-\tau \nabla f_{1}\left(x^{(k)}\right)\right)
\end{aligned}
$$

- Example: (Constrained smooth optimization)

$$
\min _{x} f_{1}(x) \quad \text { s.t. } x \in C
$$

Update step: (Projected gradient descent)

$$
\tilde{x}^{(k)}=\operatorname{proj}_{C}\left(x^{(k)}-\tau \nabla f_{1}\left(x^{(k)}\right)\right)
$$

Variable Metric Forward-Backward Splitting

- Optimization problem:

$$
\min _{x \in \mathbb{R}^{N}} \underbrace{f_{0}(x)}_{\begin{array}{c}
\text { non-smooth } \\
\text { convex }
\end{array}}+\underbrace{f_{1}(x)}_{\begin{array}{c}
\text { twice diff. } \\
\text { non-convex }
\end{array}}
$$

- Model function:

$$
f_{\bar{x}}(x)=f_{0}(x)+f_{1}(\bar{x})+\left\langle x-\bar{x}, \nabla f_{1}(\bar{x})\right\rangle+\frac{1}{2}\langle x-\bar{x}, B(x-\bar{x})\rangle
$$

B is a positive definite approximation to the $\operatorname{Hessian} \nabla^{2} f_{1}(\bar{x})$

- Update step: (Damped (approx.) Newton Method)

$$
\begin{aligned}
\tilde{x}^{(k)}=\underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} f_{0}(x) & +f_{1}\left(x^{(k)}\right)+\left\langle x-x^{(k)}, \nabla f_{1}\left(x^{(k)}\right)\right\rangle \\
& +\frac{1}{2}\left\langle x-x^{(k)}, B\left(x-x^{(k)}\right)\right\rangle+\frac{1}{2 \tau}\left|x-x^{(k)}\right|^{2}
\end{aligned}
$$

ProxDescent

- Optimization problem:

- Model function: $(D F(\bar{x})$ is the Jacobian matrix of F at $\bar{x})$

$$
f_{\bar{x}}(x)=f_{0}(x)+g(F(\bar{x})+D F(\bar{x})(x-\bar{x}))
$$

- Model assumption:

$$
\begin{aligned}
\left|f(x)-f_{\bar{x}}(x)\right| & =|g(F(x))-g(F(\bar{x})+D F(\bar{x})(x-\bar{x}))| \\
& \leq \ell|F(x)-F(\bar{x})-D F(\bar{x})(x-\bar{x})| \\
& \leq \omega(|x-\bar{x}|)
\end{aligned}
$$

ProxDescent

- Update step:

$$
\tilde{x}^{(k)}=\underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} f_{0}(x)+g\left(F\left(x^{(k)}\right)+D F\left(x^{(k)}\right)\left(x-x^{(k)}\right)\right)+\frac{1}{2 \tau}\left|x-x^{(k)}\right|^{2}
$$

- [Lewis and Wright, 2016], [Drusvyatskiy and Lewis, 2016] (with a different line-search strategy.)

A Special Case of ProxDescent:

- Optimization problem: (Non-linear least-squares problem)

$$
\min _{x \in \mathbb{R}^{N}} \frac{1}{2}|F(x)|^{2}
$$

- Update step: (Levenberg-Marquardt Algorithm)

$$
\tilde{x}^{(k)}=\underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} \frac{1}{2}\left|F\left(x^{(k)}\right)+D F\left(x^{(k)}\right)\left(x-x^{(k)}\right)\right|^{2}+\frac{1}{2 \tau}\left|x-x^{(k)}\right|^{2}
$$

More Examples

More Examples:

- Outer-linearization of the composite problem:

- Combine previous concepts of model functions.
- Higher order approximations.
- Be creative! Design good model functions for your problem.

Explicit Growth Function

Explicit Growth Function:

- Approximation error usually reduces to linearization error.
- Let $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$with $\psi(0)=0$.
- Suppose ∇f is ψ-uniformly continuous, i.e.

$$
|\nabla f(x)-\nabla f(\bar{x})| \leq \psi(|x-\bar{x}|) \quad \forall x, \bar{x} .
$$

(generalizes Hölder and Lipschitz continuity)

- Then, the following Generalized Descent Lemma holds:

$$
|f(x)-f(\bar{x})-\langle\nabla f(\bar{x}), x-\bar{x}\rangle| \leq \underbrace{\int_{0}^{1} \frac{\varphi(s|x-\bar{x}|)}{s} d s}_{\text {is a growth function }} \forall x, \bar{x}
$$

with $\varphi(s)=s \psi(s)$

Distance Measures

Class of Distance Measures:

- Bregman distance D_{h} generated by Legendre functions h.

Examples:

- Euclidean Distance Measure: $D_{h}(x, \bar{x})=\frac{1}{2}|x-\bar{x}|^{2}$
- Scaled Euclidean Distance Measure:

$$
D_{h}(x, \bar{x})=\frac{1}{2}|x-\bar{x}|_{A}^{2}:=\frac{1}{2}\langle x-\bar{x}, A(x-\bar{x})\rangle
$$

- Burg's Entropy h : (e.g. for non-negativity constraints)

$$
D_{h}(x, \bar{x})=\sum_{i=1}^{N}\left(\frac{x^{(i)}}{\bar{x}^{(i)}}-\log \left(\frac{x^{(i)}}{\bar{x}^{(i)}}\right)-1\right)
$$

- $h\left(x^{(i)}\right)=-\log \left(x^{(i)}\right)$ (Barrier) has domain $(0,+\infty)$ and grows towards $+\infty$ for for $x^{(i)} \rightarrow 0$.

Convergence Results

Seek for stationary point x^{*}, i.e. $|\nabla f|\left(x^{*}\right)=0$. (Limiting Slope)

Termination of Backtracking Line-Search:

- Backtracking terminates after a finite number of iterations.

Stationarity for Finite Termination:

- Fixed-points of the algorithm are stationary points of f.

Convergence of Objective Values:

- $\left(f\left(x^{(k)}\right)\right)_{k \in \mathbb{N}}$ is non-increasing and converging.

Stationarity of Limit Points

Assumption to avoid technical details here:

- D_{h} has full domain.
- Otherwise: Carefully control and analyze sequences approaching the boudnary of h.

Prove Stationarity of Limit Points in Three Settings:
(i) ω is growth function: $\omega(0)=\omega_{+}^{\prime}(0)=0$ and $|\nabla f|\left(x^{(k)}\right) \rightarrow 0$.
(ii) ω is proper growth function: $\lim _{t \searrow 0} \omega_{+}^{\prime}(t)=\lim _{t \searrow 0} \omega(t) / \omega_{+}^{\prime}(t)=0$.
(iii) ω is global growth function (does not require line-search).

Then $\quad \overline{|\nabla f|}\left(x^{*}\right)=0$.

Robust Non-linear Regression

Non-smooth non-convex optimization problem:

$$
\min _{u:=(a, b) \in \mathbb{R}^{P} \times \mathbb{R}^{P}} \sum_{i=1}^{M}\left\|F_{i}(u)-y_{i}\right\|_{1}, \quad F_{i}(u):=\sum_{j=1}^{P} b_{j} \exp \left(-a_{j} x_{i}\right)
$$

- $\left(x_{i}, y_{i}\right) \in \mathbb{R} \times \mathbb{R}$ noisy non-negative input-output.
- $y_{i}=F_{i}(u)+n_{i}$ with impulse noise n_{i}.
- Model function linearizes the inner functions F_{i}.
- Convex subproblems of the form: (solved using dual ascent)

$$
\tilde{u}=\underset{u \in \mathbb{R}^{P} \times \mathbb{R}^{P}}{\operatorname{argmin}} \sum_{i=1}^{M}\left\|\mathcal{K}_{i} u-y_{i}^{\diamond}\right\|_{1}+\frac{1}{2 \tau}|u-\bar{u}|^{2}, \quad y_{i}^{\diamond}:=y_{i}-F(\bar{u})+\mathcal{K}_{i} \bar{u} .
$$

- $\mathcal{K}_{i}:=D F_{i}(\bar{u})$ is the Jacobian of F_{i} at \bar{u}.

Robust Non-linear Regression

Objective value vs. number of subproblem iterations.

Image Deblurring under Poisson Noise

Constrained smooth optimization problem:

$\min _{u \in \mathbb{R}^{n_{x} \times n_{y}}} \underbrace{D_{K L}(b, \mathcal{A} u)}_{\begin{array}{c}\text { Kulldack-Leibler } \\ \text { divergence }\end{array}}+\frac{\lambda}{2} \sum_{i=1}^{n_{x}} \sum_{j=1}^{n_{y}} \underbrace{\log \left(1+\mu\left|(\mathcal{D} u)_{i, j}\right|^{2}\right)}_{\text {smooth non-convex regularizer }}$ s.t. $u_{i, j} \geq 0$

- Even for convex regularization, it is hard to minimize.
- Difficulty comes from the lack of global Lipschitz continuity.
- For convex regularizer: Use generalized Descent Lemma and Burg's entropy. [Bauschke et al., 2016]
- Burg's entropy is not strongly convex and cannot be used by current FBS.
- Subproblems in our framework have simple analytic solution.

Image Deblurring under Poisson Noise

clean

noisy and blurry

reconstruction

Summary

- Bregman Proximal Minimization Line Search Algorithm:

$$
\tilde{x}^{(k)}=\underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} f_{x^{(k)}}(x)+D_{h}\left(x, x^{(k)}\right)
$$

- Model assumption: $f_{\bar{x}}$ is convex and

$$
\left|f(x)-f_{\bar{x}}(x)\right| \leq \omega(|x-\bar{x}|) \quad \forall x .
$$

- "Approximation quality" is controlled by a growth function ω.
- Bregman distance generated by Legendre functions.
- Unification of Gradient Descent, FBS, ProxDescent, ..., and variable metric or Bregman versions.

