Klausur zu "Mathematik für Physiker IV"

Klausur-Nr.:	
Name,	Vorname:

Geburtsdatum:

Matrikel-Nr.:

- 1. Sei λ das Borel-Lebesguesche Maß auf (der Borel-Algebra von) \mathbf{R}^n . Zeigen Sie:
 - (a) Ist $U \subseteq \mathbf{R}^n$ offen und nicht leer, so gilt: $\lambda(U) > 0$.
 - (b) Ist $K \subseteq \mathbf{R}^n$ kompakt, so gilt: $\lambda(K) < \infty$.
- 2. (a) Sei H ein **R**-Vektorraum, $\langle \cdot, \cdot \rangle$ ein Skalarprodukt und $\| \cdot \|$ die induzierte Norm auf H (also $\|f\|^2 = \langle f, f \rangle$ für alle $f \in H$). Zeigen Sie, dass $\| \cdot \|$ die Parallelogrammregel erfüllt, d. h. für alle $f, g \in H$ gilt:

$$||f + g||^2 + ||f - g||^2 = 2(||f||^2 + ||g||^2)$$

- (b) Sei λ das Borel-Lebesguesche Maß auf \mathbf{R} und $H = L^1(\lambda)$ der Raum der λ -integrierbaren Funktionen auf \mathbf{R} . Zeigen Sie, dass die Norm auf H (nämlich $||f|| = \int |f| d\lambda$, $f \in H$) nicht von einem Skalarprodukt auf H kommt.
- 3. Sei $\Delta \subseteq \mathbf{R}^2$ die Einheitskreisscheibe. Berechnen Sie das Integral

$$\int_{\Lambda} e^{x^2 + y^2} \, dx dy$$

4. Wie groß ist der Anteil der Erdoberfläche, die sich zwischen dem 30. und 90. Grad nördlicher Breite befindet?