Stichproben Kennzahlen Ausreißer Graphische Darstellung

Mathematik II für Biologen Beschreibende Statistik – Eindimensionale Daten

Stefan Keppeler

16. April 2008

Stichproben Kennzahlen Ausreißer Graphische Darstellung

Stichproben

Geordnete Stichprobe – Rang

Kennzahlen

Maße für die mittlere Lage der Daten

Robustheit

Quantile

Maße für die Streuung der Daten

Ausreißer

Erkennung potentieller Ausreißer

Graphische Darstellung

Eindimensionales Streudigramm – Dotplot

Stamm- und Blattdiagramm

Histogramm

Boxplot

Empirische (kumulative) Verteilungsfunktion

Stichprobe: x_1, x_2, \ldots, x_n

- Daten
- Messergebnisse
- ► Ansammlung von Zahlen

Stichprobenumfang: n

Historisches Beispiel: (1905)

Schlafverlängerung durch Medikament B gegenüber Medikament A

• $x_i = \text{Schlafverlängerung bei Testperson } i \text{ (in h)}, n = 10$

$$1,2$$
 $2,4$ $1,3$ $1,3$ $0,0$ $1,0$ $1,8$ $0,8$ $4,6$ $1,4$

- ▶ also $x_1 = 1,2$, $x_4 = 1,3$ etc.
- ▶ i.A. nicht geordnet

geordnete Stichprobe:
$$x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(n)}$$

- $x_{(k)} = k$ ter Wert in der geordneten Stichprobe
- ▶ k heißt Rang

Im obigen Beispiel:

Rang k										
$x_{(k)}$	0,0	0,8	1,0	1,2	1,3	1,3	1,4	1,8	2,4	4,6

- ▶ Der Rang von 2,4 ist 9.
- ▶ Der Rang von 1,3 ist 5,5 (oder: 5 *und* 6).

► Durchschnitt (Mittelwert, arithmetisches Mittel)

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} (x_1 + x_2 + \dots + x_n)$$

im Beispiel:
$$\overline{x} = \frac{1}{10}(1.2 + 2.4 + ... + 1.4) = 1.58$$

 $ightharpoonup \operatorname{\mathsf{Median}} \operatorname{med}(x_1,\ldots,x_n) = \operatorname{med}$

$$\mathrm{med} = \begin{cases} x_{\left(\frac{n+1}{2}\right)} & \text{falls } n \text{ ungerade} \\ \frac{1}{2} \left(x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)}\right) & \text{falls } n \text{ gerade} \end{cases}$$

also
$$\#\{x_i: x_i < \text{med}\} = \#\{x_i: x_i > \text{med}\}$$
 im Beispiel: $\text{med} = \frac{1}{2}(x_{(5)} + x_{(6)}) = \frac{1}{2}(1,3+1,3) = 1,3$

Vergleich von \overline{x} und med:

- ► Falls 4.6 durch 460 ersetzt wird ("Kommafehler"), ändert sich \overline{x} drastisch!); dagegen bleibt med unverändert.
- ▶ Der Median med ist robuster als \overline{x} .

Verallgemeinerung des Medians:

Sei $0 < \alpha < 1$. Das α -Quantil, q_{α} teilt die Stichprobe (ungefähr) im Verhältnis α zu $1 - \alpha$, d.h.

$$\frac{\#\{x_i : x_i < q_\alpha\}}{n} \approx \alpha$$

Genauer:

$$q_\alpha = \begin{cases} x_{(k)} & \text{mit } k = \alpha n + \frac{1}{2} \text{, gerundet,} & \text{falls } \alpha n \notin \mathbb{Z} \\ \frac{1}{2} \left(x_{\alpha n} + x_{\alpha n + 1} \right) \text{,} & \text{falls } \alpha n \in \mathbb{Z} \end{cases}$$

- ▶ Median = 0.5-Quantil: med = $q_{1/2}$
- ▶ unteres Quartil = 0.25-Quantil: $q_{0.25}$
- ▶ oberes Quartil = 0.75-Quantil: $q_{0.75}$

im **Beispiel:**
$$q_{0,25} = x_{(3)} = 1.0$$
 und $q_{0,75} = x_{(8)} = 1.8$

(empirische) Varianz

$$s^{2} = s_{x}^{2} := \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

(empirische) Standardabweichung: $s = s_x := \sqrt{s^2}$

im Beispiel:
$$s^2 = \frac{1}{9} \left((1,2-1,58)^2 + \ldots + (1,4-1,58)^2 \right) \approx 1,51$$
 $s \approx 1,23$

Oft (nicht immer) gilt (Faustregel):

- ▶ Ungefähr 2/3 der Daten liegen zwischen $\overline{x} s_x$ und $\overline{x} + s_x$
- ▶ Abweichungen von \overline{x} um bis zu $2s_x$ sind durchaus möglich. (ca. 95% der Daten zwischen $\overline{x} \pm 2s_x$)
- ▶ Abweichungen der Daten um mehr als $3s_x$ ($4s_x$) treten selten (fast nie) auf.

Weitere Streumaße neben s_x

- ▶ Quartilsdifferenz: $q_{0,75} q_{0,25}$ im Beispiel: 1.8 1.0 = 0.8
- ► Medianabweichung: (median absolute deviation)

MAD = med
$$(|x_1 - \text{med}(x_1, ..., x_n)|, ..., |x_n - \text{med}(x_1, ..., x_n)|)$$

sehr robust

im Beispiel:
$$MAD = 0.4$$

Ausreißer: "verdächtig große/kleine Werte"

mögliche Gründe:

- ► Fehler (Mess-, Abschreibe-, Versuchs-, ...)
- ► falsche Erwartungen (falsches Modell)
- seltenes Ereignis beobachtet

Methoden zur Erkennung potentieller Ausreißer:

poplär, wenige robust:

$$x_i$$
 ist Ausreißer, falls $|x_i - \overline{x}| > 3s_x$ (oder $> 4s_x$)

besser:

- ▶ Falls es x_i mit $|x_i \overline{x}| > 3s_x$ gibt, so entferne das x_i mit dem größten $|x_i \overline{x}|$.
- ▶ Berechne \overline{x} und s_x neu.
- ▶ Wiederhole bis alle Werte im $3s_x$ -Intervall liegen.
- Entfernte Werte sind mögliche Ausreißer.
- empfehlenswert, da robust:

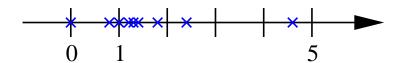
$$x_i$$
 ist Ausreißer, falls $|x_i - \text{med}| > 5 \text{ MAD}$

im Beispiel:

$$\overline{x} \pm 3s_x$$
: $[-2,1, 5,3] \rightsquigarrow$ keine Ausreißer $\text{med} \pm 5 \text{ MAD}$: $[-0,7, 3,3] \rightsquigarrow x_9 = 4,6$ möglicher Ausreißer

Eindimensionales Streudigramm – Dotplot Stamm- und Blattdiagramm Histogramm Boxplot Empirische (kumulative) Verteilungsfunktion

Eindimensionales Streudiagramm für unser Beispiel



Zerlegung von x_i in Stamm- und Blattanteil, z.B.

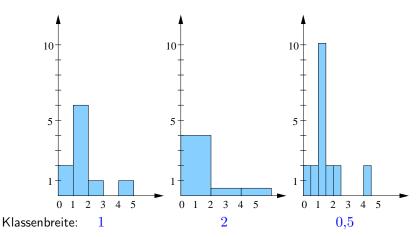
- ▶ 1,3 in Stamm 1 und Blatt 3 und 1,8 in Stamm 1 und Blatt 8
- ▶ oder
 - 1,3 in Stamm 1 und Blatt 3 und 1,8 in Stamm 1+ und Blatt 3
- etc.

Stamm	Blätter						
0		8					
1	2	3	3	0	8	4	
2	4						
3							
4	6						

Stamm	Blätter						
0	0						
0+	3						
1	2	3	3	0	4		
1+	3						
2	4						
2+							
3							
3+							
4	6						

Eindimensionales Streudigramm – Dotplot Stamm- und Blattdiagramm Histogramm Boxplot Empirische (kumulative) Verteilungsfunktion

Histogramme ("Drehe Stamm- und Blattdiagramm") für Beispiel



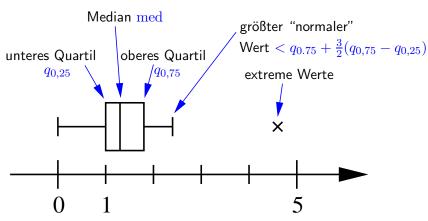
Fläche ist poportional zur Häufigkeit, nicht die Höhe!

Histogramm

Boxplot

Empirische (kumulative) Verteilungsfunktion

Boxplot für unser Beispiel:



Eindimensionales Streudigramm – Dotplot Stamm- und Blattdiagramm Histogramm Boxplot Empirische (kumulative) Verteilungsfunktion

empirische kumulative Verteilungsfunktion $F:\mathbb{R} o [0,1]$

$$F(x) = \frac{\#\{x_i : x_i \le x\}}{n}$$

Stufe der Höhe $\frac{1}{n}$ bei jedem Wert.

im Beispiel ----

(senkrechte Linien gehören streng genommen nicht mit dazu)

