Grundbegriffe: Ereignisse Wahrscheinlichkeitsmaße: Kolmogorov Axiome Bedingte Wahrscheinlichkeiten Satz von Bayes

Mathematik II für Biologen Wahrscheinlichkeitsrechnung

Stefan Keppeler

21. Mai 2008

Grundbegriffe: Ereignisse Wahrscheinlichkeitsmaße: Kolmogorov Axiome Bedingte Wahrscheinlichkeiten Satz von Bayes

Grundbegriffe: Ereignisse

Wahrscheinlichkeitsmaße: Kolmogorov Axiome

Bedingte Wahrscheinlichkeiten

Satz von Bayes

Beispiel: Diagnostischer Test

Beispiel: Gefangenenparadoxon

- ▶ Elementarereignis ω : (nicht weiter zerlegbares) Ergebnis eines einzelnen Experiments
- **Ereignisraum** Ω : Menge aller Elementarereignisse
- Ereignis A: Teilmenge von Ω

Beispiel: Würfel

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

 $A = \{1, 3, 5\}$ (Ergebnis ungerade)

$$B = \{3, 4, 5, 6\}$$
 (Ergebnis ≥ 3)

B • 6 4 • 5

▶ Menge aller Ereignisse $\Sigma = \mathcal{P}(\Omega)$: Potenzmenge (Menge aller Teilmengen) von Ω \checkmark

Definition: Eine Funktion $P: \Sigma \to [0,1]$ heißt Wahrscheinlichkeitsmaß, falls gilt

- (1) $P[\Omega] = 1$
- (2) Falls A_1, A_2, \ldots disjunkt (d.h. $A_j \cap A_k = \emptyset$, $\forall j \neq k$), so folgt

$$P\left[\bigcup_{j\geq 1}A_j\right]=\sum_{j\geq 1}P[A_j]\,,$$

insbesondere: Falls A, B disjunkt (d.h. $A \cap B = \emptyset$), so folgt

$$P[A \cup B] = P[A] + P[B].$$

Beispiel: (Laplace-)Würfel

Folgerungen:

(i)
$$P[A^C] = 1 - P[A]$$

(ii)
$$P[\emptyset] = 0$$

(iii) Für beliebiege $A, B \subset \Omega$ gilt: $P[A \cup B] = P[A] + P[B] - P[A \cap B]$

Definition: Seinen $A, B \subseteq \Omega$, $P[B] \neq 0$, so heißt

$$P[A|B] := \frac{P[A \cap B]}{P[B]}$$

bedingte Wahrscheinlichkeit von A gegeben B.

Beispiel:

Definition: Zwei Ereignisse A und B heißen unabhängig, falls gilt

$$P[A \cap B] = P[A] P[B].$$

(D.h.
$$P[A|B] = P[A]$$
 falls $P[B] \neq 0$ und $P[B|A] = P[B]$ falls $P[A] \neq 0$)

Beispiel: Diagnostischer Test Beispiel: Gefangenenparadoxon

Satz: Seien A_1,A_2,\ldots,A_n disjunkt, $\Omega=\bigcup\limits_{j=1}^nA_j$ und $B\subseteq\Omega$ mit $P[B]\neq 0$ beliebig. Dann gilt für jedes $j=1,\ldots,n$

$$P[A_j|B] = \frac{P[B|A_j] P[A_j]}{\sum_{k=1}^{n} P[B|A_k] P[A_k]}.$$

Beweis: 🕖

- ► Eine Krankheit tritt bei 1% der Bevölkerung auf (Prävalenz)
- ► Test liefert bei 98% der Kranken ein positives Ergebnis (Sensitivität)
- ► Test liefert bei 95% der Gesunden ein negatives Ergebnis (Spezifität)

	Test positiv B	Test negativ B^{C}
Person krank A_1	o.k.	falsch
Person gesund A_2	falsch	o.k.

Wie groß ist die Wahrscheinlichkeit (einer zufällig getesteten Person), krank zu sein, wenn der Test positiv ist?

$$P[A_1|B] = ?$$

Beispiel: Diagnostischer Test Beispiel: Gefangenenparadoxon

- ► In einem Gefängnis sitzen drei zum Tode verurteilte Gefangene: Anton, Brigitte und Clemens.
- ► Genau einer von ihnen soll begnadigt werden. Dazu wird ein Los gezogen, das allen die gleiche Chance gibt, begnadigt zu werden.
- ► Anton, der also eine Überlebenswahrscheinlichkeit von ¹/₃ hat, bittet den Wärter, der das Ergebnis des Losentscheids kennt, ihm einen seiner Leidensgenossen, Brigitte oder Clemens, zu nennen, der oder die sterben muss.
- ▶ Der Wärter antwortet "Brigitte"

Wie hoch ist nun Antons Überlebenswahrscheinlichkeit?

