(10 Punkte)

Mathematik II für Naturwissenschaftler

Übungsblatt 7 (Abgabe am 05.06.2008))

Aufgabe 22

Sei $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2} &, & x^2 + y^2 > 0\\ 0 &, & x = y = 0 \end{cases}.$$

Berechnen Sie alle Richtungsableitungen in $\vec{0}$. Ist f in $\vec{0}$ stetig?

Aufgabe 23 (10 Punkte)

- a) Berechnen Sie die Richtungsableitung von $f(x, y, z) = x^2 + 2x \sin y + e^{xyz}$ an der Stelle $\vec{x}_0 = (1, 0, -1)^T$ in Richtung von $\vec{v} = (1, 3, -4)^T$.
- b) Es sei $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$. Berechnen Sie ∇f , und entscheiden Sie, ob f im Ursprung total differenzierbar ist.
- c) Es sei $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x, y, z) = e^x y^3 + xyz$. Berechnen Sie ∇f . Ist f total differenzierbar?

Berechnen Sie auch $\frac{\mathrm{d}}{\mathrm{d}t} f(\vec{x}(t))$ für die Kurve $\vec{x}(t) = \begin{pmatrix} \cos t \\ 1 \\ t^2 \end{pmatrix}, t \in [0, 2\pi].$

Aufgabe 24 (10 Punkte)

Berechnen Sie das Kurvenintegral $\int_{\mathfrak{L}} \vec{f} \, d\vec{x}$ für

$$\vec{f} = \begin{pmatrix} ye^{xy} + 2x\cos(x^2 + z^2) \\ xe^{xy} \\ 2z\cos(x^2 + z^2) \end{pmatrix} \quad \text{und} \quad \mathfrak{K} : \vec{x}(t) = \begin{pmatrix} \sin^3 t \\ \sin^3 t + \cos^3 t \\ \frac{t}{\pi} \end{pmatrix}, \quad 0 \le t \le 2\pi.$$

Aufgabe 25 (10 Punkte)

Berechnen Sie $\int_{\mathfrak{K}} \vec{f} \, \mathrm{d}\vec{x}$ für $\vec{f} = \begin{pmatrix} \frac{x}{x^2 + y^2} \\ \frac{-y}{x^2 + y^2} \end{pmatrix}$ und

a)
$$\mathfrak{K}_1: \vec{x}(t) = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}, \quad 0 \le t \le 2\pi,$$

b)
$$\Re_2 : \vec{x}(t) = \begin{pmatrix} \cos(2t) \\ \sin(2t) \end{pmatrix}, \quad 0 \le t \le 2\pi,$$

c) \mathfrak{K}_3 : Die geradlinige Verbindung von $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ nach $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$.