MATHEMATISCHE PHYSIK II

Übungsblatt 10

Aufgabe 36: Tensorprodukt von Hilberträumen

a) Seien $\mathcal{H}_1, \mathcal{H}_2$ Hilberträume. Wir betrachten die Menge

$$\operatorname{span}(\otimes) := \operatorname{span}\{\psi_1 \otimes \psi_2 \mid \psi_1 \in \mathcal{H}_1, \psi_2 \in \mathcal{H}_2\}.$$

Zeigen Sie, dass für $\varphi = \sum_i c_i \varphi_{1i} \otimes \varphi_{2i} \in \operatorname{span}(\otimes)$ und $\psi = \sum_j d_j \psi_{1j} \otimes \psi_{2j} \in \operatorname{span}(\otimes)$ der Ausdruck

$$\langle \varphi, \psi \rangle_{\otimes} := \sum_{i,j} \overline{c_i} d_j \langle \varphi_{1i} \otimes \psi_{1j} \rangle_{\mathcal{H}_1} \langle \varphi_{2i} \otimes \psi_{2j} \rangle_{\mathcal{H}_2}$$

nicht von der Wahl der Linearkombination abhängt und ein Skalarprodukt definiert. Den Abschluss von span(\otimes) unter der von diesem Skalarprodukt induzierten Norm bezeichnen wir mit $\mathcal{H}_1 \otimes \mathcal{H}_2$.

b) Seien (φ_n) ONB von \mathcal{H}_1 und (ψ_m) ONB von \mathcal{H}_2 . Zeigen Sie, dass $(\varphi_n \otimes \psi_m)_{n,m}$ eine ONB von $\mathcal{H}_1 \otimes \mathcal{H}_2$ ist.

Aufgabe 37: POVMs

Wir betrachten die Definition eines POVMs E aus der Vorlesung. Zeigen Sie, dass man eine dazu äquivalente Definition erhält, wenn man auf die Forderung $E(\emptyset) = 0$ verzichtet und bei der σ -Additivität nur schwache Konvergenz fordert.

Aufgabe 38: Integration von PVMs

Sei \mathcal{H} ein Hilbertraum, (Ω, \mathcal{A}) ein Messraum und $P : \mathcal{A} \to \mathcal{L}(\mathcal{H})$ ein Projektor-wertiges Maß.

- (a) Zeigen Sie, dass für $A, B \in \mathcal{A}$ mit $A \cap B = \emptyset$ gilt P(A)P(B) = 0. Folgern Sie daraus, dass für beliebige $A, B \in \mathcal{A}$ gilt $P(A)P(B) = P(A \cap B)$.
- (b) Für einfache Funktionen $f = \sum_{j=1}^{m} \alpha_j \chi_{A_j}, A_j \in \mathcal{A}$ und $\alpha_j \in \mathbb{C}$, definiert man

$$\int_{\Omega} f dP := \sum_{j=1}^{m} \alpha_j P(A_j).$$

Zeigen Sie, dass $\int f dP$ wohldefiniert ist, also nicht von der Darstellung der einfachen Funktion abhängt.

(c) Zeigen Sie, dass für jede einfache Funktion $f = \sum_{j=1}^m \alpha_j \chi_{A_j}, A_j \in \mathcal{A}, \alpha_j \in \mathbb{C}$, gilt

$$\left\| \int_{\Omega} f dP \right\|_{\mathcal{L}(\mathcal{H})} := \left\| \sum_{j=1}^{m} \alpha_{j} P(A_{j}) \right\|_{\mathcal{L}(\mathcal{H})} \leq \|f\|_{\infty}.$$

Für beschränkte Borelfunktionen f definiert man nun das Integral bezüglich P wie folgt: sei (f_n) eine Folge einfacher Funktionen, die gleichmäßig gegen f konvergiert. Dann ist

$$\int_{\Omega} f dP := \lim_{n \to \infty} \int_{\Omega} f_n dP.$$

Verwenden Sie (c) um zu zeigen, dass der Grenzwert in der Operatornorm existiert und nicht von der gewählten Folge (f_n) abhängt.

Abgabe: Freitag, 11.07.2008, in der Vorlesung.