Mathematische Physik II

Übungsblatt 5

Aufgabe 16: Neumannsche Reihe

Sei \mathcal{H} Hilbertraum und $T \in \mathcal{L}(\mathcal{H})$ mit ||T|| < 1. Zeigen Sie, dass 1 - T invertierbar ist mit

$$(1-T)^{-1} = \sum_{n=0}^{\infty} T^n.$$

Zeigen Sie weiter, dass jedes $T \in \mathcal{L}(\mathcal{H})$ invertierbar ist, falls ||1 - T|| < 1.

Aufgabe 17: Polarisation

Sei \mathcal{H} Hilbertraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$.

a) Sei C eine anti-lineare Isometrie. Zeigen Sie, dass

$$\langle C\psi, C\varphi \rangle = \langle \varphi, \psi \rangle \quad \forall \ \psi, \varphi \in \mathcal{H}.$$

b) Zeigen Sie, dass $(T, \mathcal{D}(T))$ symmetrisch ist, falls

$$\langle \psi, T\psi \rangle \in \mathbb{R} \quad \forall \ \psi \in \mathcal{D}(T).$$

Aufgabe 18: Laplace-Operator auf einem Intervall

Wir betrachten $\left(-\frac{1}{2}\Delta, C_0^{\infty}(0,\pi)\right)$ als unbeschränkten Operator auf $L^2[0,\pi]$.

- a) Bestimmen Sie alle selbstadjungierten Erweiterungen von $\left(-\frac{1}{2}\Delta, C_0^{\infty}(0, \pi)\right)$, indem sie alle unitären Erweiterungen der Cayley-Transformierten geeignet parametrisieren und damit den Definitionsbereich der zugehörigen Erweiterung von $-\frac{1}{2}\Delta$ bestimmen.
- b) Wir definieren

$$H_D^2(0,\pi) := \{ \psi \in H^2(0,\pi) \mid \psi(0) = 0 = \psi(1) \},$$

$$H_N^2(0,\pi) := \{ \psi \in H^2(0,\pi) \mid \psi'(0) = 0 = \psi'(1) \}$$

und nennen $\Delta_D = \left(-\frac{1}{2}\Delta, H_D^2(0,\pi)\right)$ den Dirichlet- und $\Delta_N = \left(-\frac{1}{2}\Delta, H_N^2(0,\pi)\right)$ den Neumann-Laplace-Operator. Für welche Parameter in a) erhält man Δ_D bzw. Δ_N ?

c) Berechnen Sie $\sigma(\Delta_D)$ und $\sigma(\Delta_N)$.

Aufgabe 19: Spektrum von Multiplikationsoperatoren

Sei (X, μ) σ -endlicher Maßraum und $f: X \to \overline{\mathbb{R}}$ μ -messbar und μ -fast überall endlich. Wir definieren $D := \{ \psi \in L^2(X, \mu) \mid f \psi \in L^2(X, \mu) \}.$

- a) Zeigen Sie, dass D dicht in $L^2(X, \mu)$ ist und der Multiplikationsoperator (M_f, D) auf $L^2(X, \mu)$ selbstadjungiert ist.
- b) Zeigen Sie, dass $\sigma(M_f) = \operatorname{ess\,ran} f$ ist, wobei

$$\operatorname{ess\,ran} f \ := \ \big\{\lambda \in \mathbb{R} \, \big| \, \mu\big(f^{-1}(\lambda - \varepsilon, \lambda + \varepsilon)\big) > 0 \,\, \forall \, \varepsilon > 0 \big\}.$$

Tipp: Was ist die Resolvente eines Multiplikationsoperators?

Aufgabe 20: Abgeschlossenheit und Spektrum

Sei \mathcal{H} Hilbertraum. Zeigen Sie, dass T abgeschlossen ist, falls $\sigma(T) \neq \mathbb{C}$.

Abgabe: Freitag, 06.06.2008, in der Vorlesung.