Übungen zu "Lineare Algebra II"

- 1. Zeigen Sie: Sind $m, n \in \mathbf{Z}$ und $\operatorname{ggT}(m, n) = 1$ so existieren $\nu, \mu \in \mathbf{Z}$ mit der Eigenschaft $\nu n + \mu m = 1$. (Hinweis: \mathbf{Z} ist ein Hauptidealring.)
- 2. Bestimmen Sie das charakteristische Polynom, die Eigenwerte und die zugehörigen Eigenräume der folgenden Matrizen $A \in \operatorname{Mat}_3(\mathbf{Q})$ und $B \in \operatorname{Mat}_4(\mathbf{C})$:

$$A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ -1 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 1 & 0 & 2 \\ 0 & 0 & 0 & -1 \\ 1 & 3 & -1 & 4 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

- 3. Zeigen Sie: Ist $A = (a_{ij}) \in \operatorname{Mat}_n(K)$ (K Körper) eine obere Dreiecksmatrix mit gleichen Diagonaleinträgen (also $a_{ij} = 0$ für i > j und $a_{ii} = \lambda$ für ein $\lambda \in K$ und allen $i = 1, \ldots, n$), aber keine Diagonalmatrix (also $a_{ij} \neq 0$ für wenigstens ein Paar (i, j) mit i < j), so ist A nicht diagonalisierbar.
- 4. Die Fibonacci-Folge ist durch folgende Rekursion definiert: $f_{n+1} = f_n + f_{n-1}$ für $n \ge 1$ mit $f_0 = 0$ und $f_1 = 1$. Zeigen Sie:

$$f_n = \frac{\lambda_1^n - \lambda_2^n}{\lambda_1 - \lambda_2},$$

wo λ_1, λ_2 die Nullstellen des Polynoms $p(X) = X^2 - X - 1 \in \mathbf{R}[X]$ in \mathbf{R} sind und $\lambda_1 > \lambda_2$. (Hinweis: Betrachen Sie folgende Umformulierung der Rekursion

$$\begin{pmatrix} f_n \\ f_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} f_{n-1} \\ f_n \end{pmatrix}$$

und iterieren Sie diesen Schritt bis zu den Anfangswerten der Folge.)

Abgabe: Montag, 25. Mai 2009, 11 Uhr