Stichproben Kennzahlen Ausreißer Graphische Darstellung Und außerdem...

Mathematik II für Biologen Beschreibende Statistik – Eindimensionale Daten

Stefan Keppeler

24. April 2009

Stichproben

Geordnete Stichprobe – Rang

Kennzahlen

Maße für die mittlere Lage der Daten

Robustheit

Quantile

Maße für die Streuung der Daten

Ausreißer

Erkennung potentieller Ausreißer

Graphische Darstellung

Eindimensionales Streudigramm - Dotplot

Stamm- und Blattdiagramm

Histogramm

Boxplot

Empirische (kumulative) Verteilungsfunktion

Und außerdem...

Stichprobe: x_1, x_2, \ldots, x_n

- Daten
- Messergebnisse
- Ansammlung von Zahlen

Stichprobenumfang: *n*

Historisches Beispiel: (1905)

Schlafverlängerung durch Medikament B gegenüber Medikament A

▶ x_i = Schlafverlängerung bei Testperson i (in h), n = 10

$$1,2$$
 $2,4$ $1,3$ $1,3$ $0,0$ $1,0$ $1,8$ $0,8$ $4,6$ $1,4$

- ▶ also $x_1 = 1,2, x_4 = 1,3$ etc.
- ▶ i.A. nicht geordnet

geordnete Stichprobe: $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(n)}$

- $x_{(k)} = k$ ter Wert in der geordneten Stichprobe
- ▶ *k* heißt Rang

Im obigen Beispiel:

Rang k										
$x_{(k)}$	0,0	0,8	1,0	1,2	1,3	1,3	1,4	1,8	2,4	4,6

- ▶ Der Rang von 2,4 ist 9.
- ▶ Der Rang von 1,3 ist 5,5 (oder: 5 *und* 6).

► Durchschnitt (Mittelwert, arithmetisches Mittel)

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} (x_1 + x_2 + \dots + x_n)$$

im Beispiel:
$$\overline{x} = \frac{1}{10}(1.2 + 2.4 + ... + 1.4) = 1.58$$

 $ightharpoonup \operatorname{\mathsf{Median}} \operatorname{med}(x_1,\ldots,x_n) = \operatorname{med}$

$$\mathrm{med} = \begin{cases} x_{\left(\frac{n+1}{2}\right)} & \text{falls } n \text{ ungerade} \\ \frac{1}{2} \left(x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)}\right) & \text{falls } n \text{ gerade} \end{cases}$$

also
$$\#\{x_i: x_i < \text{med}\} = \#\{x_i: x_i > \text{med}\}$$
 im Beispiel: $\text{med} = \frac{1}{2}(x_{(5)} + x_{(6)}) = \frac{1}{2}(1,3+1,3) = 1,3$

Maße für die mittlere Lage der Daten Robustheit Quantile Maße für die Streuung der Daten

Vergleich von \overline{x} und med:

- ► Falls 4,6 durch 460 ersetzt wird ("Kommafehler"), ändert sich \overline{x} drastisch!); dagegen bleibt med unverändert.
- ▶ Der Median med ist robuster als \overline{x} .

Verallgemeinerung des Medians:

Sei $0 < \alpha < 1$. Das α -Quantil, q_{α} teilt die Stichprobe (ungefähr) im Verhältnis α zu $1 - \alpha$, d.h.

$$\frac{\#\{x_i : x_i < q_\alpha\}}{n} \approx \alpha$$

Genauer:

$$q_{\alpha} = \begin{cases} x_{(k)} & \text{mit } k = \alpha n + \frac{1}{2} \text{, gerundet,} & \text{falls } \alpha n \notin \mathbb{Z} \\ \frac{1}{2} \left(x_{\alpha n} + x_{\alpha n + 1} \right) \text{,} & \text{falls } \alpha n \in \mathbb{Z} \end{cases}$$

- ▶ Median = 0.5-Quantil: med = $q_{1/2}$
- ▶ unteres Quartil = 0.25-Quantil: $q_{0.25}$
- ▶ oberes Quartil = 0.75-Quantil: $q_{0.75}$

im **Beispiel:**
$$q_{0,25} = x_{(3)} = 1.0$$
 und $q_{0,75} = x_{(8)} = 1.8$

Maße für die mittlere Lage der Daten Robustheit Quantile Maße für die Streuung der Daten

(empirische) Varianz

$$s^{2} = s_{x}^{2} := \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

(empirische) Standardabweichung: $s = s_x := \sqrt{s^2}$

im Beispiel:
$$s^2 = \frac{1}{9} \left((1,2-1,58)^2 + \ldots + (1,4-1,58)^2 \right) \approx 1,51$$
 $s \approx 1,23$

Oft (nicht immer) gilt (Faustregel):

- ▶ Ungefähr 2/3 der Daten liegen zwischen $\overline{x} s_x$ und $\overline{x} + s_x$
- ▶ Abweichungen von \overline{x} um bis zu $2s_x$ sind durchaus möglich. (ca. 95% der Daten zwischen $\overline{x} \pm 2s_x$)
- ▶ Abweichungen der Daten um mehr als $3s_x$ ($4s_x$) treten selten (fast nie) auf.

Maße für die mittlere Lage der Daten Robustheit Quantile Maße für die Streuung der Daten

Weitere Streumaße neben s_x

▶ Quartilsdifferenz: $q_{0,75} - q_{0,25}$ im Beispiel: 1.8 - 1.0 = 0.8

► Medianabweichung: (median absolute deviation)

MAD =
$$med(|x_1 - med(x_1,...,x_n)|,...,|x_n - med(x_1,...,x_n)|)$$

sehr robust

im Beispiel: MAD = 0.4

Ausreißer: "verdächtig große/kleine Werte"

mögliche Gründe:

- ► Fehler (Mess-, Abschreibe-, Versuchs-, ...)
- ► falsche Erwartungen (falsches Modell)
- ▶ seltenes Ereignis beobachtet

Methoden zur Erkennung potentieller Ausreißer:

poplär, wenige robust:

$$x_i$$
 ist Ausreißer, falls $|x_i - \overline{x}| > 3s_x$ (oder $> 4s_x$)

besser:

- ▶ Falls es x_i mit $|x_i \overline{x}| > 3s_x$ gibt, so entferne das x_i mit dem größten $|x_i \overline{x}|$.
- Berechne \overline{x} und s_x neu.
- ▶ Wiederhole bis alle Werte im $3s_x$ -Intervall liegen.
- Entfernte Werte sind mögliche Ausreißer.
- empfehlenswert, da robust:

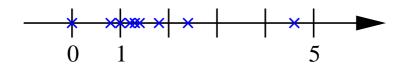
$$x_i$$
 ist Ausreißer, falls $|x_i - \text{med}| > 5 \text{ MAD}$

im Beispiel:

$$\overline{x} \pm 3s_x$$
: $[-2,1, 5,3] \rightsquigarrow \text{ keine Ausreißer}$
 $\text{med} \pm 5 \, \text{MAD}$: $[-0,7, 3,3] \rightsquigarrow x_9 = 4,6 \, \text{möglicher Ausreißer}$

Stichproben Kennzahlen Ausreißer Graphische Darstellung Und außerdem... Eindimensionales Streudigramm – Dotplot Stamm- und Blattdiagramm Histogramm Boxplot Empirische (kumulative) Verteilungsfunktion

Eindimensionales Streudiagramm für unser Beispiel



Zerlegung von x_i in Stamm- und Blattanteil, z.B.

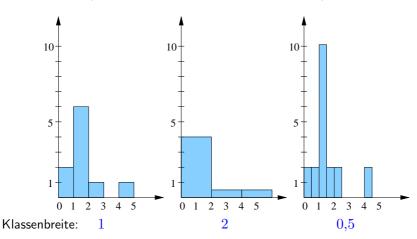
- ▶ 1,3 in Stamm 1 und Blatt 3 und 1,8 in Stamm 1 und Blatt 8
- ▶ oder
 - 1,3 in Stamm 1 und Blatt 3 und 1,8 in Stamm 1+ und Blatt 3
- ▶ etc.

Stamm	В	lätt	er				
0	0	8					_
1	2	3	3	0	8	4	
2	4						
3							
4	6						

Stamm	Blätter						
0	0						
0+	3						
1	2	3	3	0	4		
1+	3						
2	4						
2+							
3							
3+							
4	6						

Eindimensionales Streudigramm – Dotplot Stamm- und Blattdiagramm **Histogramm** Boxplot Empirische (kumulative) Verteilungsfunktion

Histogramme ("Drehe Stamm- und Blattdiagramm") für Beispiel



Fläche ist poportional zur Häufigkeit, nicht die Höhe!

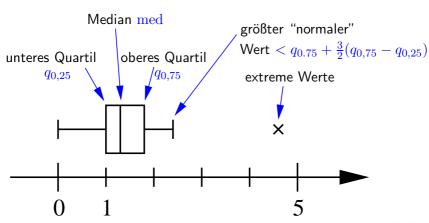
Eindimensionales Streudigramm – Dotplot Stamm- und Blattdiagramm Histogramm

Histogramm

Boxplot

Empirische (kumulative) Verteilungsfunktion

Boxplot für unser Beispiel:

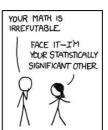


Stichproben Kennzahlen Ausreißer Graphische Darstellung Und außerdem... Eindimensionales Streudigramm – Dotplot Stamm- und Blattdiagramm Histogramm Boxplot Empirische (kumulative) Verteilungsfunktion

CAN MY BOYFRIEND COME ALONG?



BUT YOU SPEND TWICE AS MUCH TIME WITH ME AS WITH ANYONE ELSE. I'M A CLEAR OUTUER.



http://xkcd.com/539

Eindimensionales Streudigramm – Dotplot Stamm- und Blattdiagramm Histogramm Boxplot Empirische (kumulative) Verteilungsfunktion

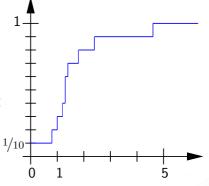
empirische kumulative Verteilungsfunktion $F: \mathbb{R} \to [0,1]$

$$F(x) = \frac{\#\{x_i : x_i \le x\}}{n}$$

Stufe der Höhe $\frac{1}{n}$ bei jedem Wert.

 $\text{im Beispiel} \longrightarrow$

(senkrechte Linien gehören streng genommen nicht mit dazu)



... glauben Sie nicht alles!

Number of partne	ers Men (age-group	[years])			Women (age-group [years])					
	16-24	25-34	35-44	All	16-24	25-34	35-44	All		
Lifetime										
0	19.6%	3.5%	1.8%	7.2%	17.7%	0.9%	0.9%	5.3%		
1	14.9%	8-4%	10.7%	11.0%	18.1%	16.2%	20.8%	18.3%		
2	8.2%	7.2%	7-2%	7.5%	11.1%	10.8%	10-9%	10.9%		
3-4	16.6%	14.3%	13.4%	14.6%	17-1%	19.7%	21.5%	19.6%		
5-9	21.0%	25.2%	28.3%	25.2%	21.5%	29.8%	26-6%	26.5%		
10+	19.7%	41.4%	38.7%	24-69	14.6%	22.7%	19-4%	19 19		
Mean (SD)	6.9 (13.1)	13.6 (23.1)	16.0 (52.4)	12.7 (35.2)	5.0 (7.6)	7.3 (9.7)	6.8 (10.8)	6.5 (9.7)		
Median (99th percentile)	3 (63)	7 (100)	7 (120)	6 (100)	3 (30)	5 (40)	4 (49)	4 (39)		
Weighted, Unweighted base	1492, 1211 es*	2092, 1759	1990, 1691	5573, 4661	1439, 1433	2017, 2486	1935, 2356	5390, 6275		
Past 5 years										
0	20.6%	5.2%	4-4%	9.0%	18.2%	2.2%	3.8%	7.0%		
1	17.2%	39.4%	64-7%	42.4%	24.4%	59.0%	75-2%	55-6%		
2	10.5%	14.0%	11.2%	12.1%	13.9%	15.2%	11.9%	13.7%		
3-4	18.2%	17-2%	10.6%	15.1%	18.3%	13.3%	6.2%	12.1%		
5–9	19.5%	14.6%	6.2%	12.9%	16.0%	7-8%	2.3%	8.0%		
10+	14.1%	9.6%	2-9%	8.4%	9.2%	2.5%	0.6%	3.6%		
Mean (SD)	5.3 (10.7)	4.2 (8.6)	2.2 (3.8)	3.8 (8.2)	3.8 (6.7)	2.2 (3.1	1.5 (3.9	2.4 (4.6)		
Median (99th per centile)	3 (41)	2 (30)	1 (19)	1 (30)	2 (27)	1 (15)	1 (6)	1 (19)		
Weighted, unweighted base	1480, 1200	2082, 1751	1960, 1669	5522, 4620	1424, 1422	2008, 2474	1915, 2332	5346, 6228		

All percentages are of column weighted base. *Bases vary from totals in table 1 due to item non-response.

THE LANCET • Vol 358 • December 1, 2001 1837

Table 2: Distribution of numbers of heterosexual partners over lifetime and in the past 5 years by gender and age-group: Natsal 2000