Übungen zu "Algebraische Topologie II"

1. Sei $n \in \mathbb{N}_0$ und $\Delta_n \subseteq \mathbb{R}^{n+1}$ der Standard–Simplex der Dimension n. Zeigen Sie:

$$(\Delta_n, \dot{\Delta}_n) \cong (B^n, S^{n-1}).$$

2. Sei (E, K) ein 2-dimensionaler simplizialer Komplex. Wir definieren $e := \#E, k := \#\{s \in K : \dim s = 1\}, f := \#\{s \in K : \dim s = 2\}$ und die $Euler-Charakteristik\ von\ K$ durch

$$\chi(K) := e - k + f.$$

- (a) Geben Sie eine Triangulierung K_M des Möbiusbandes M, K_F der Kleinschen Flasche F und K_{P_2} für den 2-dimensionalen projektiven Raum T_2 , an.
- (b) Rechnen Sie nach, dass $\chi(K_M) = \chi(K_F) = 0$ und $\chi(K_{P_2}) = 1$ ist.
- 3. Seien K, L simpliziale Komplexe. Sind $\varphi, \varphi' \colon K \to L$ simpliziale Abbildungen, so heissen φ und φ' benachbart, falls $\varphi(s) \cup \varphi'(s) \in L$ für alle $s \in K$ gilt. Wir definieren $\varphi \sim \varphi'$, falls es simpliziale Abbildungen $\varphi_0, \ldots, \varphi_n \colon K \to L$ gibt, so dass $\varphi = \varphi_0, \varphi_n = \varphi'$ und φ_{i-1}, φ_i benachbart sind für $i = 1, \ldots n$. Offensichtlich ist dies eine Äquivalenzrelation auf dem Raum der simplizialen Abbildungen von K nach L und wir bezeichnen mit [K; L] die Menge der Äquivalenzklassen (mit der von oben definierten Relation) von simplizialen Abbildungen.
 - (a) Sei M ein weiterer simplizialer Komplex. Zeigen Sie: Für $[\varphi] \in [K; L]$ und $[\psi] \in [L; M]$ ist die Komposition $[\varphi] \circ [\psi] := [\varphi \circ \psi]$ wohldefiniert. Definieren Sie dadurch eine Kategorie, deren Morphismenmenge durch [K, L] gegeben ist, so dass $[\cdot]$ ein Funktor von \mathbf{SK} in diese Kategorie wird.
 - (b) Zeigen Sie: Sind $\varphi, \varphi' \colon K \to L$ benachbart, so ist $|\varphi|$ homotop zu $|\varphi'|$.
- 4. Beweisen Sie erneut, dieses Mal ohne die Kenntnis der Homologie von S^n $(n \in \mathbb{N}_0)$, dass

$$H_k(B^n, S^n) \cong \begin{cases} \mathbb{Z} & k = n \\ 0 & \text{sonst} \end{cases}$$

ist. (Hinweis: Sei $B^{n-1}_+\subseteq S^{n-1}$ die (abgeschlossene) obere Hemisphäre. Betrachten Sie das Raumtripel (B^n,S^{n-1},B^{n-1}_+) .)

Abgabe: Montag, 3. Mai 2010, 9 Uhr