C. Hainzl, A.J. Wöhr,

G. Bräunlich

MATHEMATIK FÜR PHYSIKER IV

Übungsblatt 2

Aufgabe 5:

Berechne die folgenden Wegintegrale:

- a) $f(z) = |z|^2$ entlang des Weges, der durch die Strecke von -1 nach 1 und den oberen Einheitshalbkreis gegeben ist.
- b) $g(z) = \bar{z}^n$, $n \in \mathbb{Z}$ entlang des positiv orientierten Einheitskreises.
- c) h(z) = Im(z) entlang des Randes des Quadrats, das durch die Eckpunkte -1 i, 1 i, 1 + i und -1 + i festgelegt wird.

Aufgabe 6:

Bestimme den Konvergenzradius folgender Potenzreihen:

a)
$$\sum_{k=0}^{\infty} \left(\frac{1+a^k}{1+b^k} \right) z^k \quad a, b > 0$$

b)
$$\sum_{k=1}^{\infty} k \left(1 + \frac{3}{k}\right)^{k^2} z^k$$

c)
$$\sum_{k=0}^{\infty} \frac{z^{(k^2)}}{k!}$$

d)
$$\sum_{k=0}^{\infty} a_k z^k$$
 wobei $a_k = \begin{cases} \frac{1}{n!} & \text{falls } k = n^2, \\ 0 & \text{sonst.} \end{cases}$ $n \in \mathbb{N}$

Aufgabe 7:

Zeige, dass in Polarkoordinaten die Cauchy-Riemann-Differentialgleichungen folgende Form haben

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
 und $\frac{1}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial v}{\partial r}$.

Benutze dies, um zu zeigen, dass der komplexe Logarithmus

$$\log(z) = \log(r) + i\theta$$
, wobe
i $z = re^{i\theta}$ mit $-\pi < \theta < \pi$

auf der geschlitzten Ebene $\mathbb{C} \setminus (-\infty, 0]$ (d.h. $r > 0, -\pi < \theta < \pi$) holomorph ist.

Aufgabe 8:

Sei $D \subset \mathbb{C}$ ein Gebiet, $f: D \to \mathbb{C}$ holomorph. Zeige: Wenn f nur reelle Werte annimmt, so ist f konstant.