Mathematik II für Biologen Wiederholung:

Wiederholung: Beliebte Teststatistiken

Stefan Keppeler

19. Juli 2013

Testschema

```
Beliebte Teststatistiken Übersicht Binomialtest Spezialfall p=\frac{1}{2}: Vorzeichentest \chi^2-Tests
```

Testschema

Beliebte Teststatistiken

	Testablauf allgemein	
1	Nullhypothese H_0	
2	Alternativhypothese H_A	
3	Wähle Teststatistik X	
4	Verteilung von X falls H_0 wahr	
5	Wähle Signifikanzniveau $lpha$	
6	Verwerfungsbereich K (aus 4 & 5)	
7	Bestimme X aus Daten	
8	Testentscheidung:	
	$X \in K$ oder $X \notin K$?	

...mit Varianten für p-Wert und Vertrauensintervall (s.o.)

Jetzt: Einige Teststatistiken.

Name	Teststatistik	oft gesucht
Binomialtest	# "Erfolge"	VI für p
Dinomiartest		(Wahrsch. für "Erfolg")
Spezialfall $p = \frac{1}{2}$:	# Werte <> Vergleichswert	(Testergebnis)
Vorzeichentest		VI für Median
Wilcoxon-Test	pos. (neg.) Rangsumme	(Testergebnis)
VVIICOXOII- TEST		VI für Median
t-test (z-Test)	standardisierter Mittelwert	VI für Erwartungswert
t tost (2 Tost)		VI Tall El Waltangsweit
χ^2 -Test	χ^2	Testergebnis
Λ	^	

- ▶ man weiß: $X \sim \text{Bin}(n, p)$
- ▶ *n* bekannt
- ▶ gesucht: *p*
- ► H_0 : $p = p_0$ (H_A : $p \neq p_0$ oder >, <)
- ▶ 3. Teststatistik: X
- ▶ 6.–8. Faustregel (für n groß, genauer np(1-p) > 9): Verwerfe (beidseitig, $\alpha = 5\%$), falls

$$|X_{\mathsf{beobachtet}} - np_0| \ge 1,96\sqrt{n\,p_0\,(1-p_0)}$$

▶ 95%-Vertrauensintervall für p laut Faustregel (für n groß, ...)

$$p = \frac{X_{\text{beob.}}}{n} \pm 1,96\sqrt{\frac{1}{n}} \frac{X_{\text{beob.}}}{n} \left(1 - \frac{X_{\text{beob.}}}{n}\right)$$

▶ Beispiel: siehe z.B. vorletzte Woche

- ▶ gegeben: Stichprobe x_1, \ldots, x_n
- ightharpoonup Annahme: x_i sind Werte von Zufallsvariablen X_i ,
 - ▶ iid
 - $\blacktriangleright \ \mathsf{mit} \ \mathrm{med}_{X_i} =: m \ (\forall \ i)$
- ▶ 3. Teststatistik: $X = \#\{x_i : x_i m > 0\}$ (oder <)
- ▶ 4. $X \sim \text{Bin}(n, \frac{1}{2})$
- ▶ 6. Faustregel für Verwerfungsbereich wie Binomialtest
- ▶ VI für Median: Durchprobieren

ähnlich:

- ► Wilcoxon-Test: andere Teststatistik
- t-test (z-Test): für Mittelwert statt Median (Verwerfungskriterium & Vertrauensintervalle: Vorlesung 9)

Variante 1: χ^2 -Anpassungstest (z.B. ÜA 17, 18 & 21)

- ▶ Daten, die in verschiedene Klassen fallen (entweder natürlich oder beliebig eingeteilt)
- ► Sind Daten auf erwartete Weise verteilt?
- ▶ 3. Teststatistik:

$$\chi^2 = \sum_i \frac{(n_i - m_i)^2}{m_i}$$

wobei

- \triangleright n_i : beobachtete # in Klasse i
- m_i : erwartete # in Klasse i
- ▶ 6.–8. Verwerfe, falls $\chi^2 \ge \chi^2_{\rm krit.}$

Faustregel (für
$$\alpha=5\%$$
): $\chi^2_{\rm krit.}=\nu+2\sqrt{2\nu}$

wobei ν : Anzahl der Freiheitsgrade (beim Anpassungstest: $\nu = \#$ Klassen -1)

Variante 2: χ^2 -Test für Kontingenztafel (z.B. ÜA 27 & 29)

 zwei Merkmale treten in 2 oder mehr Ausprägungen auf (legt Klassen bereits fest)

- ▶ Sind Merkale unabhängig voneinander verteilt? (H_0)
- ▶ 3. Teststatistik: χ^2 (wie vorher)
- ► 6.-8. Faustregel: ebenfalls wie vorher wobei nun

$$\nu = (\# \text{ Zeilen} - 1)(\# \text{ Spalten} - 1)$$

