Mathematisches Institut der Universität Tübingen Prof. Dr. F. Loose P. Konstantis

WS 2009/2010 25.11.2009 Blatt 6

Übungen zu "Algebraische Topologie"

- 1. Sei $n \in \mathbb{N}$. Wir bezeichnen mit GL(n) die Gruppe der reellen invertierbaren $n \times n$ -Matrizen und mit O(n) die Gruppe der orthogonalen Matrizen, also alle relle $n \times n$ -Matrizen A mit $AA^T = 1$. Ferner versehen wir GL(n) und O(n) mit der Teilraumtopologie des \mathbb{R}^{n^2} .
 - (a) Zeigen Sie, dass GL(n) offen und O(n) kompakt ist.
 - (b) Zeigen Sie, dass die Matrizenmultiplikation, sowie die Invertierung von Matrizen stetige Abbildungen sind.
- 2. Zeigen Sie, dass die dreifach punktierte 2-Sphäre den Homotopietyp der Acht hat, $\mathbb{S}^2 \setminus \{p_1, p_2, p_3\} \cong \mathbb{S}^1 \vee \mathbb{S}^1$. (Hinweis: *Proof by picture* ist ausreichend.)
- 3. Zeigen Sie: Ist $f: \mathbb{B}^2 \to \mathbb{R}^2$ eine stetige Abbildung mit f(-x) = -f(x) für alle $x \in S^1 \subset \mathbb{B}^2$, dann existiert ein $x \in \mathbb{B}^2$ mit f(x) = 0. (Hinweis: Satz von Borsuk-Ulam).
- 4. Zeigen Sie, dass O(n) ein Deformationsretrakt von GL(n) ist.

Abgabe: Mittwoch, 2. Dezember 2009, 9 Uhr