Mathematik für Physiker III Übungsblatt 7

Aufgabe 27:

(a) Bestimmen Sie die Lage und Art der lokalen Extrema der Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, [3]

$$f(x,y) := (4x^2 - y^2) \exp^{-x^2 - 4y^2}$$
.

(b) Berechnen Sie explizit die Terme von Ordnung 3 in der Taylorentwicklung von f um den Punkt (0,1). [3]

Aufgabe 28: (Vorarbeit zu Euler-Lagrange) Es sei E die Menge aller zweimal stetig differenzierbaren Kurven $x:[0,s]\to\mathbb{R}^n$. Zeigen Sie:

- (a) E is ein \mathbb{R} -Vektorraum. (Definieren Sie zunächst was die Addition und Skalarmultiplikation in E ist) [2]
- (b) Zeigen Sie, dass

$$||x|| := \sup_{t \in [0,s]} ||x(t)||_{\mathbb{R}^n} + \sup_{t \in [0,s]} ||\dot{x}(t)||_{\mathbb{R}^n} + \sup_{t \in [0,s]} ||\ddot{x}(t)||_{\mathbb{R}^n}$$

eine Norm auf E ist, die E zu einem Banachraum macht. Hierbei bedeutet \dot{x} (bzw, \ddot{x}) die erste (bzw. zweite) Ableitung von x nach t. [4]

Aufgabe 29: Es sei $\sum_{\alpha \in \mathbb{N}_0^m} c_{\alpha} x^{\alpha}$ eine Potenzreihe. Sei weiter $(z_1, \dots, z_m) \in \mathbb{R}^m$, so dass die Menge $\{|c_{\alpha}||z^{\alpha}|: \alpha \in \mathbb{N}_0^m\}$ beschränkt ist. Zeigen Sie, dass dann $\sum_{\alpha \in \mathbb{N}_0^m} c_{\alpha} x^{\alpha}$ für jedes $x \in \mathbb{R}^n$ mit $|x_j| < |z_j|$ für alle $j \in \{1, \dots, m\}$ absolut konvergiert.

Hinweis: Versuchen Sie diese Aussagen für Potenzreihen in einer Variable zu beweisen (Stichwort: geometrische Reihe) und dann adaptieren Sie diesen Beweis für den Fall der mehreren Veränderlichen.

Aufgabe 30:* Es seien E, E' Banachräume und $U_E \subset E$ eine offene Teilmenge.

- (a) Gegeben seien hinreichend oft differenzierbare Abbildungen $F: U_E \to E', \gamma: (a,b) \to U_E$. Berechnen Sie die erste, zweite und dritte (totale) Ableitung der Verkettung $F \circ \gamma: (a,b) \to E'$. [4]*
- (b) In dem Fall $\gamma(t) = x + th$ mit $x, h \in E, t \in (a, b) \supset [0, 1]$ berechnen Sie die k-te Ableitung von $F \circ \gamma$ für ein beliebiges $k \in \mathbb{N}$.

(c) Für $f \in C^{k+1}(U_E, E')$ sei $f(x+h) = T_{x,f}^k(h) + R_{x,f}^k(h)$ die Taylorentwicklung von f um $x \in U_E$, wobei $R_{x,f}^k(x)$ das Restglied ist, siehe Vorlesungsskript.

Beweisen Sie die Abschätzung

$$||R_{x,f}^k(h)|| \le \sup_{t \in [0,1]} ||D^{k+1}f(x+th)|| \cdot ||h||^{k+1}$$

in dem Sie wie folgt vorgehen:

• (Yoga auf Banachräumen) Die höheren Ableitungen von $f: U_E \to E'$, berechnet in einem Punkt $x \in U_E$, liegen in den folgenden Räumen: $Df_x \in \mathcal{L}(E, E')$, $D^2 f_x \in \mathcal{L}(E, \mathcal{L}(E, E'))$, $D^3 f_x \in \mathcal{L}(E, \mathcal{L}(E, \mathcal{L}(E, E')))$, etc. Wir schreiben dann abkürzend $D^2 f_x(h_1, h_2) := (D^2 f_x(h_1))(h_2)$, $D^3 f_x(h_1, h_2, h_3) := ((D^3 f_x(h_1))(h_2))(h_3)$,... und für beliebiges k sowie beliebige Vektoren $h_1, \ldots, h_k \in E$: $D^k f_x(h_1, \ldots, h_k) := (\ldots((D^k f_x(h_1))(h_2)) \ldots)(h_k)$. Die so definierte Abbildung $D^k f_x : E \times \cdots \times E \to E'$, $(h_1, \ldots, h_k) \mapsto D^k f_x(h_1, \ldots, h_k)$ ist eine k-fach multilineare Abbildung. Zeigen Sie (Induktion über k), dass die folgende Anschätzung gilt:

$$||D^k f_x(h_1, \dots, h_k)||_{E'} \le ||D^k f_x||_{op} \cdot ||h_1||_E \cdots ||h_k||_E$$

[3]*

[3]*

[3]*

• Definieren Sie $\phi(t) := f \circ \gamma(t)$ mit $\gamma(t) := x + th$ und betrachten Sie für ein beliebiges aber festes $y \in [0, 1]$ die Hilfsfunktion

$$\psi^{y}(z) := \phi(y) - \phi(z) - \frac{(y-z)}{1!} \cdot D\phi_{z} - \frac{(y-z)^{2}}{2!} \cdot D^{2}\phi_{z} - \dots - \frac{(y-z)^{n}}{n!} \cdot D^{n}\phi_{z}$$

Berechnen Sie die Ableitung von ψ^y an der Stelle $z \in [0,1]$. (Schreibweise wie in 1.4.3.)

- Wenden Sie den Mittelwertsatz (1.4.6 in der Vorlesungszusammenfassung mit $\nu(t) = (\sup_{z \in [0,1]} \|D\psi^1(z))\|) \cdot t)$ auf die Funktion $\psi^1 : [0,1] \to E'$ an und zeigen Sie, dass die so gewonnene Abschätzung die zu beweisende Abschätzung impliziert.
- \bullet Zeigen Sie, dass für $E = \mathbb{R}^m$ sowie $x, h \in \mathbb{R}^m$ unter Verwendung der Multiindexschreibweise die folgende Identität besteht:

$$\sum_{|\alpha|=d} \frac{h^{\alpha}}{\alpha!} \cdot \partial^{\alpha} f(x) = \frac{D^{k} f(x) (h, \dots, h)}{k!}$$

Hinweis: für eine festes
$$h \in \mathbb{R}^m$$
 gilt $D^k f_x(h, \dots, h) = \frac{d^k}{dt^k} \Big|_0 (t \mapsto f(x+th))$ [3]*

 $\Sigma = 18$

Abgabe: Montag, 14.12.2009, zu Beginn der Vorlesung.