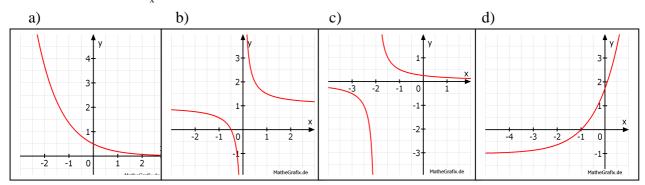
WS 14/15 - Fachdidaktik I - Übungsblatt 4 vom 17.11.14 - Abgabe 24.11.14

Aufgabe 1 (4 Punkte)

Die Graphen sind affine Transformationen der Graphen von Grundfunktionen der Form $f(x)=e^x$ bzw. $f(x)=\frac{1}{x}$. Bestimmen Sie den Funktionsterm.



Aufgabe 2 (4 Punkte)

Klasse 9 - Stand des Unterrichts: Die Schüler können lineares und exponentielles Wachstum charakterisieren und kennen für beide Wachstumsarten die rekursiven und expliziten Beschreibungen. Die Schüler sollen die folgende Aufgabe bearbeiten.

<u>Aufgabe:</u> Untersuche, ob lineares oder exponentielles Wachstum vorliegt. Berechne B(14).

n	0	1	2	3	4
B(n)	1,6	2,0	2,5	3,125	3,906

Benoten Sie jede Schülerlösung mit maximal vier Punkten. Schreiben Sie zur Begründung jeweils einen kurzen Kommentar.

Sch.1: $\frac{2.0}{1.6} = 1,25$; $\frac{2.5}{2.0} = 1,25$. Da der Quotient gleich ist, handelt es sich um exponentielles Wachstum;

Wachstumsfaktor k = 1,25. Formel: $B(n) = 1,6^{\circ} 1,25^{\circ}$; $B(14) = 1,6^{\circ} 1,25^{14} = 36,38$.

Sch.2: Die Änderungen sind verschieden, also ist es exponentielles Wachstum.

 $\frac{2.0}{1.6}$ = 1,25. Formel: B(n) = 1,6 · 1,25ⁿ; B(14) = 1,6 · 1,25¹⁴ = 36,38.

Sch.3: $\frac{2.0}{1.6} = 1,25$. Exponentielles Wachstum: B(n) = 1,6 1,25ⁿ. Probe: B(2) = 1,61,25² = 2,5;

 $B(3) = 1,61,25^3 = 3,125; \ B(4) = 1,61,25^4 = 3,906 \text{ stimmen. } B(14) = 1,6\cdot 1,25^{14} = 36,38.$

Sch.4: 1,6 1,25=2,0; 2,0 1,25=2,5; 2,5 1,25=3,125; 3,125 1,25=3,906. Man muss immer mit 1,25 malnehmen. B(14) = 1,6 1,25 1,25 1,25 (usw. insgesamt 14mal) = 36,38.

Aufgabe 3 (4 Punkte)

Gegeben sind die Funktionen f mit $f(x) = 2\sin(2(x+1))$ und g mit $g(x) = 2\sin(2x+1)$. Beschreiben Sie die einzelnen Schritte, wie man nacheinander den Graph der Funktion ausgehend von der Funktion $\sin(x)$ erhält. Bei welcher Funktion kann man charakteristische Merkmale des Graphen unmittelbar ablesen. Welche Merkmale sind das?

Aufgabe 4 (4 Punkte)

Die Tageslänge in Tübingen variiert während eines Jahres. Sie beträgt etwa 8 Stunden am 21.Dezember, 18 Stunden am 21.Juni, 13 Stunden am 21.März und am 21.September. Modellieren Sie die Tageslänge mit Hilfe einer Sinusfunktion. Skizzieren Sie den Graphen. (x-Achse: Zeit in Monaten; t = 0 am 21.Juni; y-Achse: Zeit in Stunden)