Mathematik I für Biologen, Geowissenschaftler und Geoökologen Vektorrechnung

Stefan Keppeler

19. November 2008

Vektoren

Definition & Notation Betrag & Summe

Beispiele

Addition von Kräften

Rechenregeln

Addition

Skalare Multiplikation

- ► Vektoren werden zur Darstellung gerichteter Größen verwendet.
- ▶ Man stelle sich also einen Pfeil in eine bestimmte Richtung mit einer bestimmte Länge (Betrag) vor.

Zum Rechnen:

Darstellung durch Komponenten in kartesischen Koordinaten,

$$ec{u} \in \mathbb{R}^n \,, \quad ec{u} = egin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} \,, \quad u_i \in \mathbb{R} \quad ext{(Spaltenvektor)}$$

 \ldots oder Zeilenvektor: $ec{u} = (u_1, u_2, \ldots, u_n)$

Notation: Oft auch u statt \vec{u} oder einfach u für Vektoren im \mathbb{R}^n

Definition: Der Betrag oder die Norm eines Vektors $\vec{u} = (u_1, \dots, u_n)$ ist

$$\|\vec{u}\| = \sqrt{\sum_{i=1}^n u_i^2}.$$

(stimmt überein mit dem Abstand des Punktes mit Koordinaten u_1, u_2, \ldots, u_n vom Ursprung.)

Definition: Die Summe zweier Vektoren $\vec{u}=(u_1,\ldots,u_n)$ und $\vec{v}=(v_1,\ldots,v_n)$ im \mathbb{R}^n ist komponentenweise erklärt,

$$\vec{u} + \vec{v} = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$$

Geometrische Bedeutung: Parallelogrammaddition \mathscr{I}

► **Geschwindigkeiten** addieren sich vektoriell, z.B. gehende Person auf Schiff.

- ▶ Translationen addieren sich vektoriell, z.B. Fahrt von Tübingen nach Ulm, via Stuttgart
- ▶ Mittelung von **Richtungen**: Himmelsrichtung in die ein Zugvogel morgens losfliegt, repräsentiert durch einen Vektor $\vec{u} \in \mathbb{R}^2$ mit $\|\vec{u}\| = 1$. Mittelung der Winkel? Oder über Vektoraddition?

$$\overline{ec{u}} = rac{1}{N}(ec{u}_1 + \ldots + ec{u}_N)$$

- ▶ **Addition von Kräften:** Elektrisch geladene Teilchen (z.B. Elektronen, Ionen, Staubkörner), nummeriert von 1 bis *N*.
 - ► Kraft auf Teilchen Nr. i:

$$ec{K}_i = \sum_{j=1}^N ec{K}_{ij}$$
 (Vektorsumme)

 \vec{K}_{ij} : Kraft, die Teilchen Nr. j auf Teilchen Nr. i ausübt (elektrostatische Anziehungs- oder Abstoßungskraft).

 $ightharpoonup ec{K}_{ij}$ zeigt nach Coulombschen Gesetz in Richtung der Verbindungslinie zwischen den Teilchen i und j; Betrag

$$\|\vec{K}_{ij}\| = \frac{q_i q_j}{d(\vec{x}_i, \vec{x}_j)^2}, \qquad d(\vec{x}_i, \vec{x}_j) = \|\vec{x}_i - \vec{x}_j\|,$$

wobei $q_i \in \mathbb{R}$ die Ladung und $\vec{x}_i \in \mathbb{R}^3$ die Position von Teilchen i ist.

Rechenregeln:

- $ightharpoonup \vec{u} + \vec{v} = \vec{v} + \vec{u}$ (Kommutativität)
- $ightharpoonup (\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$ (Assoziativität)
- ▶ $\vec{u} + \vec{0} = \vec{u} \quad \forall \ \vec{u}$, wobei $\vec{0} = (0, ..., 0)$ (Existenz eines neutralen Elements, "Nullvektor")
- ▶ $\vec{u} + (-\vec{u}) = \vec{0}$ wobei $-\vec{u} = (-u_1, \dots, -u_n)$ (Existenz des additiv-inversen, "das Negative von \vec{u} ")

Beispiele:

- ▶ Das Negative $-\vec{u}$ eines Geschwindigkeitsvektors entspricht der Bewegung in die entgegengesetzte Richtung mit (betragsmäßig) gleicher Geschwindigkeit.
- ► Eine Punktspiegelung am Ursprung bildet jeden Vektor auf sein Negatives ab.

Definition: Das α -fache eines Vektors $\vec{u} = (u_1, \dots, u_n) \in \mathbb{R}^n$ für $\alpha \in \mathbb{R}$ ist definiert als der Vektor

$$\alpha \vec{u} = (\alpha u_1, \dots, \alpha u_n).$$

Die so definierte Funktion $\mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ heißt Skalarmultiplikation. Beispiele:

- ▶ Zentrische Streckung um Faktor $\alpha > 0$ bildet jeden Punkt/Vektor auf sein α -faches ab.
- ► Kraft = (Masse) (Beschleunigung).
- ▶ $\vec{u} \neq 0$ und $\alpha \vec{u}$ für $\alpha > 0$ zeigen in dieselbe Richtung, $\vec{u} \parallel \alpha \vec{u}$.
- ► Falls $\vec{u} \parallel \vec{v}$, dann $\exists \alpha \in \mathbb{R}$ mit $\vec{v} = \alpha \vec{u}$
- ▶ Richtung von $\vec{u} \in \mathbb{R}^n$, $\vec{u} \neq \vec{0}$, gegeben durch Einheitsvektor

$$\vec{e} = \frac{\vec{u}}{\|\vec{u}\|}$$

(gleiche Richtung wie \vec{u} aber Betrag 1)

Rechenregeln: $\alpha, \beta \in \mathbb{R}$ (Skalare), $\vec{u}, \vec{v} \in \mathbb{R}^n$ (Vektoren)

- $(\alpha + \beta)\vec{u} = \alpha\vec{u} + \beta\vec{u}$
- $ightharpoonup \alpha(\vec{u} + \vec{v}) = \alpha \vec{u} + \alpha \vec{v}$ (zwei Distributivgesetze)
- $(\alpha\beta)\vec{u} = \alpha(\beta\vec{u})$ (Assoziativität)
- ▶ $1 \cdot \vec{u} = \vec{u}$ (neutrales Element der Multiplikation)
- $\blacktriangleright (-1)\vec{u} = -\vec{u}$
- $ightharpoonup 0 \cdot \vec{u} = \vec{0}.$

Beachte: Man multipliziert hier einen Vektor mit einem Skalar, nicht mit einem anderen Vektor! Man kann durch einen Skalar $\alpha \neq 0$ dividieren (indem man mit α^{-1} multipliziert), aber man kann nicht durch einen Vektor dividieren!