Mathematik I für Naturwissenschaftler

Ubungsblatt 12 (Abgabe am 16.01.2009)

Aufgabe 53 (10 Punkte)

Bestimmen Sie die Polardarstellung der folgenden Punkte im \mathbb{R}^2 :

a)
$$(3,4)$$

b)
$$(4, -3)$$

c)
$$(-2,1)$$

d)
$$(-1, -2)$$

Geben Sie die folgenden Punkte im \mathbb{R}^3 in Kugelkoordinaten (r, θ, ϕ) an:

e)
$$(\pi, 0, 0)$$

g)
$$(5,0,5)$$

Aufgabe 54 (10 Punkte) Seien $\alpha, b \in \mathbb{R}$ beliebig und $A \in \mathbb{R}^{2 \times 2}$ definiert durch

$$A = b \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}.$$

Bestimmen Sie die Polardarstellung von $A\vec{e}_1$ und $A\vec{e}_2$, wobei $\{\vec{e}_1,\vec{e}_2\}$ die Standardbasis des \mathbb{R}^2 ist. Was bewirkt also die Anwendung von A auf \vec{e}_1 und \vec{e}_2 ? Schließen Sie daraus auf die Wirkung von A auf beliebige Vektoren.

Aufgabe 55 (10 Punkte)

Berechnen Sie – falls möglich – für die Matrizen

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{und} \quad B = \begin{pmatrix} 3 \\ 5 \\ 2 \end{pmatrix}$$

a)
$$AA^{T}$$
, b) $A^{T}A$, e) $B^{T}AA^{T}$, f) A^{2} ,

b)
$$A^T A$$

c)
$$AA^TB$$
,

d)
$$A^T A B$$
,

e)
$$B^T A A^T$$
,

f)
$$A^2$$
,

c)
$$AA^TB$$
,
g) A^TAA^TA .

Aufgabe 56 (10 Punkte)

Wir definieren die Potenz A^n einer quadratischen Matrix gemäß

$$A^0 = I$$
, $A^1 = A$, $A^2 = AA$, $A^3 = AAA$, ...

Zeigen Sie mit vollständiger Induktion:

$$\begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}^n = \begin{pmatrix} 1 & 0 \\ 3n & 1 \end{pmatrix} \qquad \forall \ n \in \mathbb{N}_0.$$

Weiter definieren wir die Matrixexponentialfunktion durch die bekannte Taylorreihe der e-Funktion, d.h. $\exp(A) := \sum_{n=0}^{\infty} \frac{1}{n!} A^n$. Berechnen Sie $\exp\begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}$.

HINWEIS: Aus der Matrixaddition (komponentenweise) folgt natürlich

$$\sum_{n} \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix} = \begin{pmatrix} \sum_{n} a_n & \sum_{n} b_n \\ \sum_{n} c_n & \sum_{n} d_n \end{pmatrix}.$$