Prolog
Hamilton-Operator
Absolut kontinuierliches Spektrum
Methode des Konjugierten Operators
Mourre etc. für nicht-rel. QED

Mathematische Resultate zur Quantenelektrodynamik Absolut kontinuierliches Spektrum oberhalb des Grundzustands

Stefan Keppeler

18. Dezember 2008

Prolog

Literatur

Erwartungen

Hamilton-Operator

Skalierung / Feinstrukturkonstante α

Absolut kontinuierliches Spektrum

Methode des Konjugierten Operators

Idee

Illustration

Voraussetzungen

Konjugierter Operator: Dilatationen

Mourre etc. für nicht-rel. QED

Mourre etc. für nicht-rel. QED

- ▶ J. Fröhlich, M. Griesemer und I.M. Sigal Spectral theory for the standard model of non-relativistic QED Commun. Math. Phys. **283** (2008) 613–646
- ▶ Methode des konjugierten Operators
 - ► J. Sahbani

 The conjugate operator method for locally regular Hamiltonians

 J. Operator Theory 38 (1997) 297–322
 - H.L. Cycon, R.G. Froese, W. Kirsch und B. Simon Schrödinger Operators (Kapitel 4)
 Springer-Verlag, Berlin Heidelberg, 1987

Mourre etc. für nicht-rel. QED

Physikalische Erwartungen

- ▶ Elektronen ohne Feld
 - Gebundene Zustände (Punktspektrum)
 - Kontinuum oberhalb Ionisierungsschwelle (absolut stetiges Spektrum)
- Elektronen mit Feld
 - Grundzustand (inf des Spektrums ist Eigenwert)
 - Angeregte Zustände werden Resonanzen
 - Kontinuum oberhalb des Grundzustands (absolut stetiges Spektrum)

Skalierung so, dass **Feinstrukturkonstante** α allein als Parameter im Wechselwirkungsterm von Elektron(en) und Feld auftritt:

$$H = \left(-\mathrm{i}\nabla + \alpha^{3/2}A(\alpha x)\right)^2 + \mathsf{Coulomb} + H_f\,.$$

Zusammenhang mit physikalischem Hamilton-Operator: ${\mathscr M}$

Satz (vgl. Cycon *et al.* Proposition 4.1) Sei H selbstadjungiert und $R(z):=\frac{1}{H-z}$. Weiter existiere für jedes φ aus einer dichten Menge eine Konstante $C(\varphi)>\infty$, so dass

$$\lim_{\varepsilon \to 0+} \sup_{\mu \in (a,b)} \langle \varphi, \operatorname{Im} R(\mu + \mathrm{i}\varepsilon) \varphi \rangle \le C(\varphi).$$

Dann hat H nur absolut stetiges Spektrum in (a, b).

Beweis:

Methode des Konjugierten Operators

► Voraussetzung: Mourre Abschätzung

$$E_{\Delta}(H)[H, iA] E_{\Delta}(H) \ge \alpha E_{\Delta}(H)$$

▶ Folgerung: Limiting Absorption Principle $(s > \frac{1}{2})$

$$\lim_{\varepsilon\to 0+} \langle \varphi, \langle A \rangle^{-s} \, R(\lambda \pm \mathrm{i}\varepsilon) \, \langle A \rangle^{-s} \, \psi \rangle \, \text{ ex. uniform}$$

- ...und weiter
- (i) absolut stetiges Spektrum und
- (ii) lokaler Zerfall durch Photonenemission,

$$\|\langle A \rangle^{-s} e^{-iHt} f(H) \langle A \rangle^{-s}\| = O\left(\frac{1}{t^{s-1/2}}\right), \ t \to \infty$$

- Virial-Theorem (folgt aus Mourre-Abschätzung): Keine Eigenwerte
- ▶ Satz (vgl. Cycon *et al.* Theorem 4.2) Seien H und A beschränkt und selbstadjungiert und sei $[H, iA] = C^{\dagger}C$ mit $\ker(C) = \{0\}$. Dann hat H rein absolut stetiges Spektrum.

Beweis:

Bemerkung: Mourre Abschätzung: ähnlich, aber

- Operatoren i.A. unbeschränkt
- lokal im Spektrum

$H:D(H)\subset\mathcal{H}\to\mathcal{H}$ s.a., A s.a., $\Omega\subset\mathbb{R}$ offen

▶ H ist lokal von Klasse $C^2(A)$ in Ω , d.h.

$$s \mapsto e^{-isA} f(H) e^{isA} \varphi$$

ist zweimal stetig diffbar $\forall f \in C_0^{\infty}(\Omega)$ und $\forall \varphi \in \mathcal{H}$.

► Für jedes $\lambda \in \Omega$ existiert eine Umgebung Δ von λ mit $\overline{\Delta} \subset \Omega$ und eine Konstante $\alpha > 0$, so dass

$$E_{\Delta}(H)[H, iA] E_{\Delta}(H) \ge \alpha E_{\Delta}(H)$$

(Mourre-Abschätzung).

Idee
Illustration
Voraussetzungen
Konjugierter Operator: Dilatationen

Geeignetes A: Dilatationsoperator

$$A = \mathrm{d}\Gamma(a)$$
, $a = \frac{1}{2}(px + xp)$.

Anschaulich: (klassisch)

Dilatation:
$$e^{-\frac{i}{2}(px+xp)t} \varphi(x) = e^{-\frac{dt}{2}} \varphi(e^{-t}x)$$

Definitionen / Forderung

- $ightharpoonup E := \inf(H)$
- $E_1 := \inf \sigma(H_{e^-})$ isoliert und nicht-entartet
- $E_2 := \inf(\sigma(H_{e^-}) \setminus \{E_1\})$
- ▶ $E_{\text{gap}} := E_2 E_1$

Satz (Mourre-Abschätzung; Fröhlich *et al.* Theorem 1) Sei $\alpha\ll 1$. Dann gilt für jedes $\sigma\leq \frac{E_{\rm gap}}{2}$

$$E_{\Delta}(H-E)[H,iA]E_{\Delta}(H-E) \ge \frac{\sigma}{10}E_{\Delta}(H-E),$$

wobei $\Delta = \left[\frac{\sigma}{3}, \frac{2\sigma}{3}\right]$.

Damit folgt absolut stetiges Spektrum in $\Omega = (E, E + \frac{E_{\text{gap}}}{3})$.

Warum α klein?

