WS 2011/12 09.12.2011 Blatt 9

Übungen zu "Mathematik für Physiker I"

1. Sei $f:[a,b]\to\mathbb{R}$ integrierbar und $\xi\in(a,b)$. Zeigen Sie, dass auch $f|_{[a,\xi]}$ und $f|_{[\xi,b]}$ integrierbar sind und es gilt:

$$\int_{a}^{b} f(x)dx = \int_{a}^{\xi} f(x)dx + \int_{\xi}^{b} f(x)dx.$$

(Hinweis: Benutzen Sie (7.6) aus der Vorlesung und Aufgabe 1 von Blatt 8.)

2. Zeigen Sie, dass für jedes b > 0 gilt:

$$\int_0^b \sqrt{x} dx = \frac{2}{3} \sqrt{b^3}.$$

(Hinweis: Benutzen Sie die geometrische Progression.)

- 3. Sei $f:[0,1]\to\mathbb{R}$ gegeben durch f(0):=1, f(x):=0, wenn x irrational ist und $f(x):=\frac{1}{q},$ wenn $x=\frac{p}{q}$ ist, mit $p,q\in\mathbb{N}$ und der Bruch $\frac{p}{q}$ gekürzt ist.
 - (a) Zeigen Sie, dass f in $\mathbb{Q} \cap [0,1]$ unstetig, aber in den irrationalen Punkten von [0,1] stetig ist. (Hinweis: Zu jedem $\varepsilon > 0$ gibt es nur endlich viele $x \in [0,1]$ mit $f(x) \geq \varepsilon$.)
 - (b) Zeigen Sie, dass f integrierbar ist und dass $\int_0^1 f(x)dx = 0$ ist.
- 4. Zeigen Sie: Ist $f:[a,b] \to [0,\infty)$ stetig und $\int_a^b f(x)dx = 0$, so ist f=0.

Abgabe: Freitag, 16. Dezember 2011, 9 Uhr, in der Vorlesung