Mathematik I für Biologen, Geowissenschaftler und Geoökologen Integration

Stefan Keppeler

13. Januar 2014

Stammfunktionen

Mittelung

Beispiel: Temperaturen

Integration

Definition: Flächeninhalt

Hauptsatz Beispiele

Technik: Partielle Integration

Fourierreihen

Definition: Ist $f:[a,b] \to \mathbb{R}^d$ die Ableitung von $F:[a,b] \to \mathbb{R}^d$, so heißt F Stammfunktion oder unbestimmtes Integral von f.

Beispiel: 🥖

Bemerkung: Ist F Stammfunktion von f, so ist auch F+C, mit beliebiger Konstante $C\in\mathbb{R}^d$, denn

$$(F+C)' = F' + C' = F' = f$$

Satz: Ist $f:[a,b]\to\mathbb{R}^d$ differenzierbar und f'=0 auf ganz [a,b], so ist f konstant.

Beispiel: Fährt ein Auto mit der Geschwindigkeit Null, so kommt es nicht vom Fleck.

Folgerung: Ist F Stammfunktion von f, so sind alle Stammfunktionen von f von der Form F+C mit $C\in\mathbb{R}^d$. UNIVERSITATION TÜBINGEN

Integration als kontinuierliche Summation bzw. Mittelung

Beispiel: Zeitmittel der Temperatur

- ightharpoonup T(t): Temperatur an einem Ort zur Zeit t.
- ▶ Mittelwert der Temperaturen zu den Zeitpunkten t_1, \ldots, t_n :

$$\overline{T} = \frac{1}{n} \sum_{i=1}^{n} T(t_i)$$
 (z.B. 12-Uhr-Temperaturen) der letzten Woche

Ziel: Mittel über alle Zeitpunkte im Intervall [a, b]:

$$\overline{T} = \frac{\text{Fl\"{a}che unter } T(t)}{\text{L\"{a}nge des Zeitintervalls}}$$

(z.B. Durchschnittstemperatur über 24 Stunden) &

Definition: Flächeninhalt

Hauptsatz Beispiele

Technik: Partielle Integration

Anschauliche "Definition":

▶ Den Flächeninhalt zwischen dem Graphen der Funktion $f \ge 0$, der x-Achse sowie den Geraden x = a und x = b nennen wir

$$\int_{a}^{b} f(x) \, \mathrm{d}x \,, \quad \mathcal{P}$$

das Integral der Funktion f von a bis b.

- Für eine Funktion f, die auch negative Werte annimmt, ist das Integral gerade $A_+ A_-$, wobei
 - ▶ A₊ die Fläche oberhalb der x-Achse und
 - ▶ A_ die unterhalb ist.

In anderen Worten, jedes Flächenstück wird mit dem Vorzeichen von \boldsymbol{f} versehen.

Definition: Flächeninhalt Hauptsatz Beispiele

Technik: Partielle Integration

Hauptsatz der Differenzial- und Integralrechnung:

Ist $F:[a,b]
ightarrow \mathbb{R}$ differenzierbar und f=F' stetig, dann ist

$$\int_a^b f(x) \, \mathrm{d}x = F(b) - F(a) \,.$$

Ist umgekehrt eine stetige Funktion $f:[a,b] \to \mathbb{R}$ gegeben, so ist die Funktion

$$F(x) := \int_{a}^{x} f(y) \, \mathrm{d}y$$

eine Stammfunktion von f.

Beweisidee:

Bemerkung: Wir schreiben auch $\int f(x) dx = F(x)$ (unbestimmtes Integral), falls F' = f.

Definition: Flächeninhalt Hauptsatz

Beispiele

Technik: Partielle Integration

► Integration eines Polynoms

$$\int_a^b \sum_{k=0}^n c_k x^k dx = ? \quad \mathscr{I}$$

$$\int_{0}^{3} \frac{\mathrm{d}x}{2} = ?$$

$$\int_{1}^{3} \frac{\mathrm{d}x}{x^{2}} = ? \quad \mathcal{I}, \qquad \int_{1}^{3} \frac{\mathrm{d}x}{x} = ? \quad \mathcal{I}$$

$\triangleright n \in \mathbb{N}$:

$$\int_{-\pi}^{\pi} \sin(nt) dt = ? \quad \mathcal{I}, \qquad \int_{-\pi}^{\pi} \sin^2(nt) dt = ? \quad \mathcal{I}$$

Definition: Flächeninhalt Hauptsatz

Beispiele

Technik: Partielle Integration

Satz: Seien f und g stetig differenzierbar auf [a,b], dann gilt

$$\int_{a}^{b} f'(x) g(x) dx = \left[f(x)g(x) \right]_{a}^{b} - \int_{a}^{b} f(x) g'(x) dx.$$

Beweis:

Beispiele:

$$\blacktriangleright n, m \in \mathbb{N}, \ n \neq m: \int_{-\pi}^{\pi} \sin(nx) \sin(mx) \, \mathrm{d}x = ?$$

Wiederholung¹: Satz über Fourierreihen

Ist $f: \mathbb{R} \to \mathbb{R}$ hübsch² und periodisch mit Periodenlänge 2π , dann gibt es reelle Zahlen a_0, a_1, a_2, \ldots und $b_1, b_2, b_3 \ldots$ so, dass

$$f(t) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos(nt) + b_n \sin(nt) \right)$$

für alle $t \in \mathbb{R}$. Die rechte Seite heißt die Fourier-Reihe von f.

Weiter: Es gilt $(n \ge 1)$

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt, \qquad a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(nt) dt,$$

und
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(nt) dt$$
.

²etwas mehr als stetig

¹vgl. Vorl. 6 Trigonometrie und Vorl. 10 Konvergenz & Stetigkeit