Mathematik für Physiker 3

Übungsblatt 1

Aufgabe 1: (\times)

Seien $g \in \mathbb{R}$ und $A = \begin{pmatrix} g & 1 \\ 2 & g \end{pmatrix}$ gegeben. Bestimme die Lösung der Gleichung $\dot{x}(t) = A \cdot x(t)$ für die Anfangsbedingungen $x_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ und $\frac{1}{\sqrt{2}} \begin{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix}$.

Aufgabe 2: $(\times, *, 2 \text{ Punkte})$

Finde alle Lösungen der Gleichung $\dot{x}(t) = f(x(t), t)$ mit

- a) $f(x,t) = 1 + e^{2t}$,
- b) $f(x,t) = e^{3x+2t}$.

Aufgabe 3: $(\times, *, 2 \text{ Punkte})$

Finde alle Lösungen der Gleichung $\dot{x}(t) = \sin(t) - x(t)$.

Aufgabe 4: $(\times, *, 4 \text{ Punkte})$

Finde möglichst viele Lösungen der Gleichung $xy(x)^2 + y(x) - xy'(x) = 0$. Hinweis: Benutze einen integrierenden Faktor.

Aufgabe 5: (\times)

Sei $f(x) = -x^3 - x^2 + 2x$. Skizziere qualitativ das Verhalten der Lösungen der Gleichung $\dot{x}(t) = f(x(t))$.