Mathematik II für Naturwissenschaftler

Übungsblatt 6 (Abgabe 02.06.2016)

Aufgabe 25 (10 Punkte)

Sei $f: \mathbb{R}^3 \to \mathbb{R}, f(\vec{x}) = e^{xyz} + (x - y)\cos(xz), \vec{x} = (x, y, z)^T$.

- a) Berechnen Sie die partiellen Ableitungen f_x , f_y und f_z .
- b) Ist f total differenzierbar? Geben Sie ∇f an.
- c) Bestimmen Sie die Richtungsableitung von f an der Stelle $\vec{x}_0 = (1, 1, 1)^T$ in Richtung von $(3, 4, 0)^T$.
- d) Bestimmen Sie die Richtungsableitung von f im Ursprung in Richtung von $\begin{pmatrix} 1\\-1\\\sqrt{2} \end{pmatrix}$.

Aufgabe 26

(10 Punkte + 5 Zusatzpunkte)

Sei $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} &, & x^2 + y^2 > 0\\ 0 &, & x = y = 0 \end{cases}.$$

- a) Zeigen Sie: Die Funktion f ist stetig. HINWEIS: $|xy| \le x^2 + y^2$ (warum?)
- b) Berechnen Sie die partiellen Ableitungen von f (für $\vec{x} \neq \vec{0}$).
- c) Berechnen Sie alle Richtungsableitungen von \vec{f} in $\vec{0}$.
- d) Ist f im Ursprung total differenzierbar? Begründen Sie Ihre Antwort.

Aufgabe 27 (10 Punkte)

Wenn Sie $\nabla = \left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right)$ als vektorwertigen Differentialoperator betrachten, können Sie auch Skalarprodukte im \mathbb{R}^3 , das Kreuzprodukt bilden.

Man definiert für $\vec{f}: \mathbb{R}^n \to \mathbb{R}^n$, $\vec{x} \mapsto (f_1(\vec{x}), \dots, f_n(\vec{x}))^T$ und $\vec{g}: \mathbb{R}^3 \to \mathbb{R}^3$

$$\operatorname{div} \vec{f} = \nabla \cdot \vec{f} = \sum_{j=1}^{n} \frac{\partial f_{j}}{\partial x_{j}} \quad \text{(Divergenz)} \quad \text{und} \quad \operatorname{rot} \vec{g} = \nabla \times \vec{g} = \begin{pmatrix} \frac{\partial g_{3}}{\partial x_{2}} - \frac{\partial g_{2}}{\partial x_{3}} \\ \frac{\partial g_{1}}{\partial x_{3}} - \frac{\partial g_{3}}{\partial x_{1}} \\ \frac{\partial g_{2}}{\partial x_{1}} - \frac{\partial g_{1}}{\partial x_{2}} \end{pmatrix} \quad \text{(Rotation)}.$$

Berechnen Sie (wo möglich) div \vec{f} , rot \vec{f} , grad V, div grad V und rot grad V für

$$\vec{f}(x,y,z) = \begin{pmatrix} x+y \\ x-z\sin z \\ x\cos(yz) \end{pmatrix} \quad \text{und} \quad V(x,y,z) = \frac{1}{\sqrt{x^2+y^2+z^2}}.$$

Aufgabe 28 ² (keine Abgabe)

Wir möchten alle Lösungen der DGL³

$$y^{(4)} - 2y^{(3)} + 2y'' - 2y' + y = 42$$

finden. Dazu betrachten wir zunächst die zugehörige homogene Gleichung und machen den Ansatz

$$y(x) = e^{\lambda x}$$
.

- a) Welche Gleichung muss λ erfüllen?
- b) Welche λ lösen diese Gleichung? HINWEIS: $\lambda = i$ ist darunter.
- c) Geben Sie dementsprechend 4 linear unabhängige Lösungen der homogenen Gleichung an. HINWEIS: Eine doppelte Lösung der Bestimmungsgleichung für λ behandeln Sie wie bei DGLn zweiter Ordnung.
- d) Raten Sie eine Lösung der inhomogenen Gleichung.
- e) Geben Sie die Lösungsmenge der inhomogenen Gleichung an.

 $^{^2\}mathrm{Diese}$ Aufgabe wird nicht in den Übungen besprochen sondern ist eine reine Wiederholungsaufgabe.

³Zur Erinnerung: $y^{(3)} = y'''$