Mathematik I für Naturwissenschaftler

Übungsblatt 13 (Abgabe am 22.01.2016)

Aufgabe 70¹ (10 Punkte)

Berechnen Sie – falls möglich – für die Matrizen

$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ 1 & 1 \end{pmatrix} \quad \text{und} \quad B = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

- a) AA^{T} , b) $A^{T}A$, e) $B^{T}AA^{T}$, f) A^{2} ,
- b) $A^T A$,
- c) AA^TB ,
- d) $A^T A B$,

HINWEIS: Assoziativität ist hilfreich.

Aufgabe 71 (10 Punkte)

Bestimmen Sie die Inverse A^{-1} von

$$A = \begin{pmatrix} 3 & 0 & 3 & 0 \\ 0 & 2 & 0 & -1 \\ 1 & 0 & -2 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}.$$

Berechnen Sie damit die Lösungen $\vec{x} \in \mathbb{R}^4$, $X \in \mathbb{R}^{4 \times 2}$ und $Y \in \mathbb{R}^{4 \times 4}$ von

$$A\vec{x} = \begin{pmatrix} 12\\5\\-5\\8 \end{pmatrix}, \qquad AX = \begin{pmatrix} 0 & 12\\3 & 5\\0 & -5\\1 & 8 \end{pmatrix} \quad \text{und} \quad AY = \begin{pmatrix} 6 & 0 & 0 & 0\\0 & 1 & 0 & -3\\-1 & 0 & -3 & 0\\2 & 1 & 2 & -1 \end{pmatrix}.$$

Wie hätten Sie \vec{x} , X, oder Y bestimmen können, ohne zunächst A^{-1} zu berechnen?

Aufgabe 72 (10 Punkte)

Seien $x, y \in \mathbb{R}$ mit $r^2 := x^2 + y^2 \neq 0$ und sei

$$A = \begin{pmatrix} 1 & 0 & x \\ 0 & 1 & y \\ x & y & 0 \end{pmatrix}.$$
 Bestimmen Sie A^{-1} .

HINWEIS: Die Abkürzung $r^2 := x^2 + y^2$ ist geschickt, und das Ergebnis lässt sich besonders hübsch in der Form $A^{-1} = \frac{1}{r^2} (\cdots)$ angeben.

 $^{^{1}\}mathrm{Diese}$ Aufgabe wird nicht in den Übungsgruppen besprochen. Das Vergleichen von Ergebnissen und die Diskussion von Lösungswegen, z.B. im Webforum, ist aber erwünscht und wird unterstützt.

Aufgabe 73 (keine Abgabe)

Sei $G = \left\{ A \in \mathbb{R}^{2 \times 2} \,\middle|\, A^T A = A A^T = I \right\}$ und sei · das Matrixprodukt.

- a) Sind $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ und $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ in G?
- b) Zeigen Sie: (G, \cdot) ist eine Gruppe.
- c) Ist (G, \cdot) abelsch? Begründen Sie Ihre Antwort.

Aufgabe 74 (8 Zusatzpunkte)

Üben Sie bis spätestens 07.02.16 auf www.khanacademy.org die Skills

- Defined and undefined matrix operations,
- Multiply matrices by matrices,
- Find the inverse of a 3x3 matrix
- Solving matrix equations.

HINWEIS: Siehe Aufgabe 12 (Blatt 2).