Mathematik I für Naturwissenschaftler

Übungsblatt 11 (Abgabe am 13.01.2017)

Aufgabe 61 (keine Abgabe)

Seien U und V Unterräume des \mathbb{R}^{10} mit dim U=7 und dim V=5 sowie Basen $\vec{a}_1,\ldots,\vec{a}_7$ von U und $\vec{b}_1,\ldots,\vec{b}_5$ von V. Welche Werte kann

$$\dim \, \mathrm{span} \left(\vec{a}_1, \ldots, \vec{a}_7, \vec{b}_1, \ldots, \vec{b}_5 \right)$$

annehmen (mit Begründung)? Geben Sie für jeden Fall explizit ein Beispiel an (z.B. durch Angabe geeigneter \vec{a}_i und \vec{b}_i)!

Aufgabe 62 (14 Punkte)

a) Bestimmen Sie eine ON-Basis für $U \subset \mathbb{R}^4$,

$$U = \operatorname{span}\left(\begin{pmatrix} 0\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1\\1 \end{pmatrix}\right),$$

bezüglich des kanonischen Skalar
produkts auf $\mathbb{R}^4.$

b) Bestimmen Sie mithilfe des Schmidtschen Orthogonalisierungsverfahrens eine ON-Basis des \mathbb{R}^2 bezüglich des Skalarprodukts aus Aufgabe 60e. Beginnen Sie mit den l.u. Vektoren

$$\vec{a}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} , \quad \vec{a}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} .$$

Aufgabe 63 (keine Abgabe)

Gilt $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$ für beliebige $\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^3$? Begründen Sie Ihre Antwort.

Aufgabe 64 (10 Punkte)

Seien $\vec{a}_1, \vec{a}_2, \vec{a}_3, \vec{b} \in \mathbb{R}^3$ gegeben. Wir betrachten das LGS

$$x_1 \vec{a}_1 + x_2 \vec{a}_2 + x_3 \vec{a}_3 = \vec{b}$$
 für $x_j \in \mathbb{R}$, $j = 1, 2, 3$.

- a) Bilden Sie das Kreuzprodukt mit \vec{a}_2 von rechts und anschießend das Skalarprodukt des Ergebnisses mit \vec{a}_3 . Lösen Sie nun wenn möglich nach x_1 auf.
- b) Beschaffen Sie sich analoge Lösungsformeln für x_2 und x_3 .
- c) Welche Bedingung müssen die \vec{a}_j erfüllen, damit Sie mithilfe der Formeln aus a und b wirklich die Lösung des LGS erhalten?

Aufgabe 65 . (6 Punkte)

Bestimmen Sie die hundertste Ableitung von $\frac{\sin x}{x}$ (wenn nötig stetig fortgesetzt) an der Stelle x = 0.

HINWEIS: Die Taylorreihe um Null ist hilfreich.

Frohe Weihnachten und einen guten Rutsch ins neue Jahr!