Universität Tübingen, Fachbereich Mathematik Dr. Stefan Keppeler & Nicolai Rothe

Group Representations in Physics

Homework Assignment 4 (due on 22 Nov 2017)

Problem 18

Three spin- $\frac{1}{2}$ particles define a representation D of S_3 on $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \cong \mathbb{C}^8$ by permutations of the particles, i.e. e.g. $D((12))|\uparrow\downarrow\uparrow\rangle = |\downarrow\uparrow\uparrow\rangle$.

Which irreducible representations of S_3 are contained in D and how often does each of them appear?

Problem 19

Let $g = \begin{pmatrix} u & -\overline{v} \\ v & \overline{u} \end{pmatrix}$, $u, v \in \mathbb{C}$ with $|u|^2 + |v|^2 = 1$.

a) Verify that $g \in SU(2)$, and explain why every $g \in SU(2)$ can be written in this way. The basis vectors $|\uparrow\rangle$ and $|\downarrow\rangle$ of \mathbb{C}^2 , as defined in the lecture, transform in the twodimensional representation $\Gamma^2(g) = g \forall g \in SU(2)$.

b) Write $\Gamma^2(g)|\uparrow\rangle$ and $\Gamma^2(g)|\downarrow\rangle$ as linear combinations of $|\uparrow\rangle$ and $|\downarrow\rangle$.

Consider now $\mathbb{C}^2 \otimes \mathbb{C}^2$ with the product basis $|\uparrow\uparrow\rangle = |\uparrow\rangle \otimes |\uparrow\rangle$ etc. (cf. lecture). Under SU(2) this basis transforms in $\Gamma^{2\otimes 2} = \Gamma^2 \otimes \Gamma^2$.

- c) Expand $\Gamma^{2\otimes 2}|\uparrow\uparrow\rangle$ etc. in the product basis.
- d) Show: span(|0,0⟩) and span(|1,1⟩, |1,0⟩, |1,-1⟩) (as defined in the lecture) are invariant under SU(2), and thus carry one- and three-dimensional representations of SU(2), respectively, i.e. Γ^{2⊗2} = Γ¹ ⊕ Γ³.
- e) Explicitly determine the representation matrices $\Gamma^1(g)$ and $\Gamma^3(g)$.

On $\mathbb{C}^2 \otimes \mathbb{C}^2$ also acts – as in Problem 18 – a representation D of $S_2 \cong \mathbb{Z}_2 = \{e, (12)\}.$

f) In which representations of S_2 do the vectors $|1,1\rangle$, $|1,0\rangle$, $|1,-1\rangle$ and $|0,0\rangle$ transform?

Problem 20

We consider a rotationally invariant Hamiltonian. Let E be an eigenvalue of H with eigenspace V_E spanned by the spherical harmonics $Y_{1m}(\varphi, \vartheta) = \cos \vartheta e^{im\varphi}$ with a fixed radial part R, i.e. $V_E = \operatorname{span}(\{R(r)Y_{1m}(\varphi, \vartheta) : m = -1, 0, 1\}).^1$

 V_E carries a three-dimensional irreducible representation of O(3), defined by $(\Gamma(U)\psi)(x) = \psi(U^{-1}x)$. O(3) contains the subgroup $D_3 = \{e, C, \overline{C}, \sigma_1, \sigma_2, \sigma_3\} \cong S_3$, where C and \overline{C} denote rotations about the z-axis (cf. Section 2.4.1).

Study the effect of perturbations that are only invariant under D_3 or $\mathbb{Z}_3 \cong \{e, C, \overline{C}\}$. Determine the relevant irreducible representations with their multiplicities and sketch the possible splitting of energy levels.

Problem 21

Let V be a finite-dimensional vector space and $P: V \to V$ a linear operator with $P^2 = P$.

a) Show that there exist subspaces U and W with $V = U \oplus W$, $P|_U = 1$ and $P|_W = 0$. Let $\langle \cdot, \cdot \rangle$ be a scalar product on V, and let $P^{\dagger} = P$.

b) Show that $U = W^{\perp}$.

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} r \sin \vartheta \cos \varphi \\ r \sin \vartheta \sin \varphi \\ r \cos \vartheta \end{pmatrix}$$

¹We use spherical coordinates