Group Representations in Physics

Homework Assignment 5 (due on 29 Nov 2017)

Problem 22

We consider once more the CO_2 molecule of Problem 15.

- a) How many non-equivalent irreps does the symmetry group V_4 have, and what are their dimensions?
- b) Determine the character table for V_4 .

In Problem 15 we found a six-dimensional representation of V_4 .

- c) Which irreps are contained in this six-dimensional representation?
- d) Decompose the six-dimensional carrier space into irreducible invariant subspaces by applying the generalised projection operators.

Problem 23

 $V = \mathbb{C}^2$ carries the 2-dimensional irreducible representation of $D_3 \cong S_3$ (cf. Section 2.4.1). On $W = V \otimes V$ we consider the corresponding product representation. Decompose W into irreducible invariant subspaces by applying the generalised projection operators, and determine the Clebsch-Gordan coefficients.

Problem 24

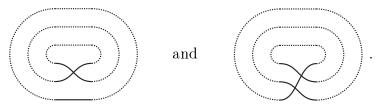
For $\sigma \in S_n$ and j = 1, ..., n let $k_j(\sigma)$ be the number of (disjoint) cycles of length j in σ , e.g. $k_1(e) = n$ and $k_j(e) = 0 \ \forall j > 1$. Show:

a) The conjugacy class of σ is determined by its cycle structure, i.e.

$$[\sigma] := \{ \tau \sigma \tau^{-1} : \tau \in S_n \} = \{ \tau \in S_n : k_j(\tau) = k_j(\sigma), j = 1, \dots, n \}.$$

Can you come up with a proof (or illustration) of this fact in birdtrack notation (see Section 1.4)?

HINT: In order to make the cycle structure visible consider the birdrack diagram of σ and connect the first line on the left to the first line on the right etc.; e.g. for $(12), (132) \in S_3$ consider



b) The number of elements of a class is given by

$$|[\sigma]| = \frac{n!}{\prod\limits_{j \le n} k_j! j^{k_j}}.$$

Problem 25

For $A \in \mathbb{C}^{n \times n}$ the matrix exponential is defined as

$$e^A = \exp(A) = \sum_{n=0}^{\infty} \frac{A^n}{n!}$$
.

Prove:

a) The series converges absolutely and uniformly. HINT: On $\mathbb{C}^{n\times n}$ use the operator norm

$$||A|| = \sup_{v \in \mathbb{C}^n \setminus \{0\}} \frac{|Av|}{|v|},$$

for which we have $||AB|| \le ||A|| ||B||$.

- b) For $T \in GL(n)$ we have $e^{TAT^{-1}} = Te^{A}T^{-1}$.
- c) e^{tA} is the unique solution of the initial value problem $\dot{X}(t) = AX(t), X(0) = 1$.
- d) For $t, s \in \mathbb{C}$ we have $e^{(t+s)A} = e^{tA}e^{sA}$.
- e) $(e^A)^{\dagger} = e^{(A^{\dagger})}$.
- f) $\det e^A = e^{\operatorname{tr} A}$.