Group Representations in Physics

Homework Assignment 9 (due on 10 Jan 2018)

Problem 40

The elements of $\mathfrak{su}(2)$ can be written as $X = \vec{\sigma} \cdot \vec{x}$ with $\vec{x} \in \mathbb{R}^3$ (cf. Problems 34 & 38). The action of SU(2) on $\mathfrak{su}(2)$ by conjugation (see Problem 38) then defines a homomorphism

$$\varphi: \mathrm{SU}(2) \to \mathrm{GL}(3,\mathbb{R})$$
$$\vec{\sigma} \cdot \varphi(U)\vec{x} := U(\vec{\sigma} \cdot \vec{x})U^{\dagger}.$$

Show that

- a) $\varphi(U)_{ij} = \frac{1}{2} \operatorname{tr}(\sigma_i U \sigma_j U^{\dagger}),$
- b) $\varphi(U)^T = \varphi(U)^{-1}$, and
- c) $det(\varphi(U)) = 1$. Hint: Recall the connectedness properties of SO(3).

Hence $\varphi(SU(2)) \subset SO(3)$.

- d) Determine the kernel of φ .
- e) Calculate $\varphi(U_{\alpha})$ for $U_{\alpha} = e^{-\frac{1}{2}i\alpha\sigma_3}$, $\alpha \in [0, 4\pi)$ and explain that $\varphi(SU(2)) = SO(3)$. What can we now conclude using the homomorphism theorem (Problem 9)?

Problem 41

a) Determine the Haar measure for SU(2) in axis-angle parametrisation,

$$U = \exp\left(-i\frac{\alpha}{2}\vec{\sigma} \cdot \vec{x}\right) ,$$

with $0 \le \alpha < 4\pi$ and $\vec{x} \in S^2 \hookrightarrow \mathbb{R}^3$. Normalise s.t. $\operatorname{vol}(\mathrm{SU}(2)) = 1$.

HINT: It is convenient to first show $(\vec{x} \cdot \vec{\sigma})(\vec{y} \cdot \vec{\sigma}) = \mathbb{1}\vec{x} \cdot \vec{y} + i\vec{\sigma}(\vec{x} \times \vec{y})$ and to use the unit vectors $\vec{e_r}, \vec{e_\varphi}, \vec{e_\vartheta}$ for spherical coordinates.

b) Use the result of (a) together with Problem 37 in order to determine the Haar measure for SO(3) in the axis-angle parametrisation.

Problem 42

The orthogonal group O(n) is a submanifold of $\mathbb{R}^{n\times n}$. It is given by the level set to the regular value 0 of the function $F:\mathbb{R}^{n\times n}\to \operatorname{Sym}(n), \ F(A)=A^TA-1$, i.e. $O(n)=\{A\in\mathbb{R}^{n\times n}:F(A)=0\}=F^{-1}(0)$. The Lie algebra $\mathfrak{o}(n)$ is the tangent space at the identity and given by $\mathfrak{o}(n)=\ker(DF|_{1})$.

Calculate $\mathfrak{o}(n)$ explicitly and determine the dimension of O(n).