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Problem 43

a) Prove the following formula for the characters of the irreps Γj of SU(2),

χj(α) =
sin ((2j + 1)α/2)

sin(α/2)
.

b) Consider the product representation Γj ⊗ Γk with j ≥ k. Show that every irrep Γℓ

with ℓ = j − k, . . . , j+ k appears exactly once in the decomposition of Γj ⊗Γk, and
that all other irreps are absent.

Problem 44

Let V be a (complex, finite dimensional) vector space and let V ∗ be its dual, i.e. the space
of all linear maps V → C. For a linear map A : V → V we define its dual A∗ : V ∗ → V ∗

by V ∗ ∋ f 7→ A∗(f) := f ◦ A. Let G be group and Γ : G → GL(V ) a representation.

a) Define a representation Γ∗ : G → GL(V ∗) in a natural way.

Hint: Simply replacing Γ(g) : V → V by its dual map doesn’t quite work (why?)
but with a slight modification it does.

Let {ej} be a basis of V and {fj} the corresponding dual basis, i.e. fj(ek) = δjk ∀ j, k =
1, . . . , dimV = dimV ∗. For g ∈ G we express Γ(g) : V → V and Γ∗(g) : V ∗ → V ∗ as
matrices in the bases {ej} and {fj}, respectively.

b) What is the relation between these two matrices? What happens if Γ is unitary?

Problem 45

Let Γ by an irrep of SU(2) on Cn. Show that there exists a T ∈ GL(n,C) with T 2 ∈ {±1}
s.t.

Γ(g) = TΓ(g)T−1 ∀ g ∈ SU(2).

In which cases do we have T 2 = 1?

Hint: First find T for the defining representation. Observe that T ∈ SU(2) and then
investigate Γ(T ).



Problem 46

Let A,B ∈ Cn×n. We define
adAB := [A,B] .

a) Show (for t ∈ R)

etABe−tA = etadAB

= B + t[A,B] +
t2

2
[A, [A,B]] + . . .

Hint: Show that both sides solve the same initial value problem.

b) Let Z : R → Cn×n be analytic; β, t ∈ R. Show

∂

∂t
eβZ(t) =

∫ β

0

e(β−u)Z(t)Z ′(t)euZ(t)du .

Hint: Show that both sides (as functions of β) solve the same initial value problem.

c) We set eZ(t) := etAetB . In the identity of part (b) choose β = 1 and u = 1− x, and
conclude that ∫ 1

0

exZ(t)Z ′(t)e−xZ(t)dx = A+ etadAB .

Under which conditions do we have Z(t) = t(A +B)?

d) Expand Z of part (c) about t = 0 and show the Baker-Campbell-Hausdorff formula

Z(t) = t(A+B) +
t2

2
[A,B] +

t3

12
([A, [A,B]] + [[A,B], B]) +O(t4) .

Hint: Calculate the l.h.s. of (c) using (a), and compare coefficients of power series.


