Universität Tübingen, Fachbereich Mathematik Dr. Stefan Keppeler & Nicolai Rothe

Group Representations in Physics

Homework Assignment 11 (due on 24 Jan 2018)

Problem 47

Let G be a Lie group with Lie algebra \mathfrak{g} , and let ad be the adjoint representation of \mathfrak{g} , i.e. $\operatorname{ad}_X(Y) = [X, Y]$. The map

$$K: \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$$
$$(X, Y) \mapsto K(X, Y) := \operatorname{tr}(\operatorname{ad}_X \circ \operatorname{ad}_Y)$$

is called Killing-Form.

Show:

- a) K is bilinear and symmetric.
- b) $K(\operatorname{Ad}_{q}(X), \operatorname{Ad}_{q}(Y)) = K(X, Y) \quad \forall X, Y \in \mathfrak{g} \text{ and } \forall g \in G.$

For semi-simple Lie groups (which we haven't defined, but the classical groups SU(n) und SO(n) are examples) K is positive definite, i.e. it defines a scalar product. In this case we choose an orthonormal basis $\{X_j\}$ with respect to K, i.e. $K(X_j, X_k) = \delta_{jk}$, and define $C_2 \in E(\mathfrak{g})$ by

$$C_2 := \sum_j X_j X_j \,.$$

Show:

- c) C_2 is independent of the choice of basis.
- d) C_2 is a Casimir operator (the so-called *quadratic Casimir operator*), i.e.

$$\operatorname{Ad}_g(C_2) = C_2 \quad \forall \ g \in G.$$

Problem 48

Show that the GL(N) irrep corresponding to the Young diagram $\Theta_a = \bigsqcup_{i=1}^{l}$ with N rows is given by the determinant.

HINT: Convince yourself that for the vectors $|i_1, \ldots, i_N\rangle$ contributing to $e_a g|\alpha\rangle$ all i_k are different. Write these vectors as $p|1,\ldots,N\rangle$ with a permutation p and calculate $e_a g | 1, \ldots, N \rangle.$

Problem 49

In birdtrack notation we write vectors $v \in V$ or tensors $t \in V^{\otimes n}$, as blobs with one or several lines attached, e.g.

$$v = - \bigcirc \in V$$
 or $t = - \bigcirc \in V^{\otimes 3}$.

Expressed in a basis, components are

$$v_j = \underline{v}_j$$
 or $t_{jk\ell} = \frac{\frac{j}{k}}{\underline{\ell}}$,

i.e. we write indices on the lines. Linear maps $A: V^{\otimes n} \to V^{\otimes n}$ are represented by blobs with n legs on each side, e.g.

$$A = - + V^{\otimes 3} \to V^{\otimes 3}$$

and with $t \in V^{\otimes 3}$ we have

Birdtracks for permutations $p \in S_n$, or $\in \mathcal{A}(S_n)$, see Problems 24 & 28, can now be applied (as linear maps) to elements of $V^{\otimes n}$, e.g.

$$(12)t = \underbrace{\times}_{} 0$$

We obtain traces of linear maps by connecting the first line on the left to the first line on the right etc. (cf. also Problem 24), with each loop contributing a factor of dim V = N(why?), e.g. for $e, (12) \in \mathcal{A}(S_3)$ we get

$$\operatorname{tr} e = \bigcirc = N^3$$
 and $\operatorname{tr}(12) = \bigcirc = N^2$

- a) Calculate the trace of (132) $\in S_3$ and $= \subseteq \mathcal{A}(S_3)$.
- b) Normalise the Young operators $e_1, e_3, e_2, e_2^{(23)} \in \mathcal{A}(S_3)$ of Section 5.3 s.t. they are idempotent (see Problem 29). Determine the traces of these primitive idempotents. These are the dimensions of the GL(N) irreps contained in $V^{\otimes 3}$.

HINT: Some identities from Problem 28 are useful.