ANALYTICAL MECHANICS Exercise: Wigner-Weyl calculus

1. (a) For \hat{p} and \hat{x}, the momentum and position operators (with $[\hat{p}, \hat{x}]=\frac{\hbar}{\mathrm{i}}$), show

$$
\hat{x} \mathrm{e}^{-\lambda \hat{p}}=\mathrm{e}^{-\lambda \hat{p}}(\hat{x}+\lambda[\hat{p}, \hat{x}]) .
$$

Hint: Show that both sides of the equation solve the same initial value problem in λ.
*(b) For two operators \hat{A} and \hat{B} define

$$
\operatorname{ad}_{\hat{A}} \hat{B}:=[\hat{A}, \hat{B}] .
$$

Show:

$$
\begin{aligned}
\mathrm{e}^{\lambda \hat{A}} \hat{B} \mathrm{e}^{-\lambda \hat{A}} & =\mathrm{e}^{\lambda \mathrm{ad}_{\hat{A}}} \hat{B} \\
& =\hat{B}+\lambda[\hat{A}, \hat{B}]+\frac{\lambda^{2}}{2}[\hat{A}[\hat{A}, \hat{B}]]+\mathcal{O}\left(\lambda^{3}\right)
\end{aligned}
$$

Hint: Show that both sides of the equation solve the same initial value problem in λ.
Remark: For $\hat{A}=\hat{p}$ and $\hat{B}=\hat{x}$ this implies (a).
(c) Derive the following special case of the Baker-Campbell-Hausdorff rule

$$
\mathrm{e}^{-(a \hat{x}+b \hat{p})}=\mathrm{e}^{-a \hat{x}} \mathrm{e}^{-b \hat{p}} \mathrm{e}^{\frac{a b}{2}[\hat{p}, \hat{x}]} .
$$

Hint: Show that the functions $f(t):=\mathrm{e}^{-t(a \hat{x}+b \hat{p})}$ and $g(t):=\mathrm{e}^{-t a \hat{x}} \mathrm{e}^{-t b \hat{p}} \mathrm{e}^{\mathrm{t}^{2} \frac{a b}{2}[\hat{p}, \hat{x}]}$ solve the same initial value problem in t (use (a) along the way).
2. Calculate the operators with Weyl symbol
(a) $A=x^{2} p$.

Express the result in terms of \hat{p} and \hat{x} in two ways:
(i) With all operators \hat{x} moved to the left.
(ii) As sums of products of \hat{p} and \hat{x} without using additional additive constants.
(b) $\boldsymbol{L}=\boldsymbol{x} \times \boldsymbol{p}$, where $\boldsymbol{x}, \boldsymbol{p} \in \mathbb{R}^{3}$.

Also calculate the Poisson brackets $\left\{L_{j}, L_{k}\right\}$ and the commutators $\left[\hat{L}_{j}, \hat{L}_{k}\right]$.
3. Calculate the Weyl symbol of the operator

$$
\hat{H}=-\frac{\hbar^{2}}{2 m} \Delta+V(x)
$$

with $x \in \mathbb{R}^{d}$ and $\Delta=\sum_{j=1}^{d} \frac{\partial^{2}}{\partial x_{j}^{2}}$.
4. Calculate the marginals

$$
\int_{\mathbb{R}^{d}} W[\psi](p, x) \mathrm{d}^{d} p \quad \text { and } \quad \int_{\mathbb{R}^{d}} W[\psi](p, x) \mathrm{d}^{d} x
$$

of the Wigner function

$$
W[\psi](p, x)=\int_{\mathbb{R}^{d}} \psi\left(x+\frac{z}{2}\right) \overline{\psi\left(x-\frac{z}{2}\right)} \mathrm{e}^{-\frac{i}{\hbar} p z} \mathrm{~d}^{d} z
$$

and express them in terms of the wave function $\psi(x)$ and its (normalised) Fourier transform $g(p)=(2 \pi \hbar)^{-d / 2} \tilde{\psi}(p)$, respectively.
5. Calculate the Wigner function of the coherent state

$$
\psi(x)=\left(\frac{1}{\pi}\right)^{1 / 4} \mathrm{e}^{-\frac{1}{2}(x-\alpha)^{2}}
$$

with $\alpha \in \mathbb{C}$. What is the meaning of $\operatorname{Re} \alpha$ and $\operatorname{Im} \alpha$?
6. (a) Derive the equation of motion for the Wigner function $W[\psi](p, x)$ in the Schrödinger picture.
Hint: First derive the equation of motion for \hat{P}_{ψ} using the Schrödinger equation. Then calculate the symbol of both sides and use a relation from the lecture.
(b) Write the solution of (a) more explicitly in the case where $H(p, x)=\frac{p^{2}}{2 m}+V(x)$.
(c) Which equation do you obtain from the result of (a) in leading order as $\hbar \rightarrow 0$?

