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These notes are based on two lectures (3 hrs in total) given at the end of an analytical
mechanics course (based on [1]). The aim is to point out the – maybe not immediately
obvious – similarity between quantum and classical mechanics and discuss the quantum
to classical correspondence. To this end quantum mechanics is formulated on phase space.
In particular we show that the fact that one finds the same relations for commutators
of quantum observables as one obtains for Poisson brackets of the corresponding classical
observables in not a mere coincidence. . . We also discuss how this correspondence can be
exploited in order to control quantum time evolution in terms of classical dynamics.

We won’t put too much emphasis on mathematical rigorousity especially when it comes
to precise statements of domains of operators, conditions for boundedness etc. (i.e. all
statements hold whenever they make sense ;-). More elaborate texts on this subject in
a similar (physics) style are e.g. [2, 3]. Notice, however, that everything presented here
can be done in a mathematically rigorous fashion and that the formalism developed is
actively used for proving theorems in mathematical physics. An introductory mathematical
text accessible for physicists is [4]. Further reading includes [5, 6, 7, 8]. (This is a very
incomplete list!)
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1 Recap: Hamiltonian Mechanics

So far we have seen various formulations of classical mechanics. The Hamiltonian version
explictly lives on phase space, a symplectic manifold – for definiteness in the following
this will always be Rd × Rd ∼= R2d – where we can choose coordinates (p, x), canonically
conjugate momenta and positions. Observables are given by functions on phase space,
A : R2d → R.

A special role is played by the Hamiltonian H(p, x) (which for simplicity shall be time-
independent) determining the time evolution through Hamilton’s equations of motion,

ẋ = ∇pH(p, x) , ṗ = −∇xH(p, x) . (1.1)

Defining the Poisson bracket of two observables by

{A,B} := (∇pA)(∇xB)− (∇xA)(∇pB) (1.2)

Hamilton’s equations of motion can be written in an even more symmetric way,

ẋ = {H, x} , ṗ = {H, p} . (1.3)

In fact the time evolution of any observable A is governed by the differential equation

Ȧ = {H,A} . (1.4)

Notation: If (p(t), x(t)) denotes the solution of (1.3) with initial conditions (p(0), x(0)) =
(p0, x0) then we also write

φt(p0, x0) := (p(t), x(t)) , (1.5)

where φt : R2d → R2d denotes the Hamiltonian flow with the obvious properties

φ0 = id and φt ◦ φt′ = φt+t
′
. (1.6)

2 Brief Introduction to Quantum Mechanics

Im quantum mechanics (in the Schrödinger representation) the state of the system is rep-
resented by a wave function ψ ∈ L2(Rd).

The interpretation of ψ is that |ψ(x)|2 (suitably normalised) yields the probability density
for finding the particle at position x. Then the expectation value for, say, xn is given by∫

xn |ψ(x)|2dx . (2.1)
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In general observables are represented by self-adjoint operators Â and physically meaningful
quantities are, e.g., expectation values

〈ψ, Âψ〉 =

∫
Rd

ψ(x) (Âψ)(x) ddx (2.2)

(the wave functions are assumed to be normalised, i.e. 〈ψ, ψ〉 = 1).

In the Schrödinger picture time evolution is governed by the Schrödinger equation

i~
∂ψ

∂t
(x, t) = Ĥ ψ(x, t) , (2.3)

where the (quantum) Hamiltonian Ĥ is the quantisation of the (classical) Hamiltonian
H(p, x) (see below). Thus,

ψ(x, t) = e−
i
~ Ĥt ψ(x, 0) , (2.4)

and the information of time evolution is carried by the wave function whereas the operators
are time independent.

Conversely, in the Heisenberg picture the wave function is time independent and operators
evolve according to

Â(t) = e
i
~ ĤtÂe−

i
~ Ĥt , (2.5)

and one easily verifies that Â(t) solves

˙̂
A(t) = − i

~
[Ĥ, Â(t)] . (2.6)

Notice that in both pictures expectation values (and their time dependence) are the same,
as they have to be!

Also notice that (2.6) looks a lot like (1.4) if only we were able to relate the classical
Poisson bracket and the quantum mechanical commutator. We will return to this problem
and make precise statements about it in sections 3.2 and 4.

The basic classical observables are “translated” to quantum mechanics (“quantised”) by
the rules,

phase space variable −→ operator ... in Schrödinger representation
x −→ x̂ = x
p −→ p̂ = ~

i
∇

which imply the canonical commutation relations

[p̂j, x̂k] =
~
i
δjk . (2.7)

For more general observables A −→ Â = “A(p̂, x̂)” may lead to an ordering problem.
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A possible (good) choice is to take symmetrised products of p and x, i.e. (for one degree
of freedom)

xp −→ 1

2
(x̂p̂+ p̂x̂) , (2.8)

which is called Weyl ordering.

2.1 The Fourier Transform

Since we will make heavy use of Fourier transforms in the following, let us fix some con-
ventions and notation and list some (only a few!) properties which we will use later.

For a function f ∈ L1(Rd) we define its Fourier transform by

f̃(p) =
1

(2π~)d

∫
Rd

f(x) e−
i
~px ddx=: F [f ](p) (2.9)

The inverse transform then reads

f(x) =

∫
Rd

f̃(p) e
i
~px ddp=: F−1[f̃ ](x) . (2.10)

The following two properties/consequences will be used later on:

• The Fourier transform of a derivative yields the Fourier transform of the function
itself multiplied by (powers of) the Fourier variable:

F
[

∂nf

∂xj · · · ∂xk

]
(p) =

1

(2π~)d

∫
Rd

∂nf

∂xj · · · ∂xk
(x) e−

i
~px ddx

n-fold partial integration

=

(
i

~

)n

pj · · · pk f̃(p) .

(2.11)

• By subsequently applying Fourier transform and inverse Fourier transform,

f(x) =

∫
Rd

f̃(p) e
i
~px ddp =

1

(2π~)d

∫
Rd

∫
Rd

f(y) e
i
~ (px−py) ddy ddp (2.12)

we can read off the Fourier representation of the δ-function (which is actually a
distribution),

δ(x) =
1

(2π~)d

∫
Rd

e
i
~px ddp , (2.13)

with properties (evaluated on suitable test functions f ∈ S(Rd))∫
Rd

f(x) δ(x− y) ddx = f(y) (2.14)
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and

f(x)
∂

∂xj
δ(x) = −δ(x) ∂

∂xj
f(x) . (2.15)

The latter can be verified by partial integration.

3 Weyl Quantisation

Let us try to rewrite and formalise the quantisation rules of section 2 a bit.

Consider a classical observable A(x) which depends only on x. According to our rules we
quantise it as

A(x) −→ Â = A(x̂) . (3.1)

Using the δ-function this can be written as

Â =

∫
Rd

A(x) δ(x− x̂) ddx . (3.2)

In order to define the δ-function of an operator we use the Fourier representation (2.13)
and obtain

Â =
1

(2π~)d

∫
Rd

∫
Rd

A(x) e
i
~ ξ(x−x̂) ddξ ddx . (3.3)

Notice that ξ has the dimension of a momentum, i.e. the integral extends over phase space.
Obviously we can write down an analogous expression for an observable which depends only
on p but nor on x.

For a general observable A(p, x) we would now like to write something like

Â =

∫
Rd

∫
Rd

A(p, x) “δ(x− x̂) δ(p− p̂)” ddp ddx . (3.4)

where the quotes indicate the ordering problem. As a possible choice we try a symmetric
Fourier-like representation of the product of the two δ-functions, i.e.

“ . . . ” =
1

(2π~)d

∫
Rd

∫
Rd

e
i
~ [ξ(x−x̂)+y(p−p̂)]ddξ ddy . (3.5)

In order see whether this is equivalent to Weyl ordering of products we calculate the
quantisation of xp, i.e. we compare with (2.8) Let us also introduce the following
Notation: Op[A] = Â. Then

Op[px] =
1

(2π~)2

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

px e
i
~ [ξ(x−x̂)+y(p−p̂)]︸ ︷︷ ︸

e
i
~ [ξx+yp] e−

i
~ [ξx̂+yp̂]

dξ dy dp dx . (3.6)
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Using the Baker-Campbell-Hausdorff rule we can split the exponential according to

e−
i
~ [ξx̂+yp̂] = e−

i
~ ξx̂ e−

i
~yp̂ e

i
~

ξy
2 . (3.7)

By further changing variables from x to x′ = x+ y
2

we obtain

Op[px] =
1

(2π~)2

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

p(x′ − y

2
) e

i
~ ξ(x

′−x̂) e
i
~y(p−p̂) dξdydpdx′

= x̂p̂− 1

2π~

∞∫
−∞

∞∫
−∞

p
y

2
e

i
~y(p−p̂)︸ ︷︷ ︸

~
2i

∂

∂p
e

i
~y(p−p̂)

dydp

= x̂p̂−
∞∫

−∞

p
~
2i
δ′(p− p̂) dp

f(x) δ′(x) = −f ′(x) δ(x)

= x̂p̂+
~
2i
.

(3.8)

This should be compared to

1

2
(x̂p̂+ p̂x̂) =

1

2
(x̂p̂+ x̂p̂− [x̂, p̂]) = x̂p̂+

~
2i
. (3.9)

Thus, we conclude that

Â ≡ Op[A] =
1

(2π~)2d

∫
Rd

∫
Rd

∫
Rd

∫
Rd

A(p, x) e
i
~ [ξ(x−x̂)+y(p−p̂)] ddξ ddy ddp ddx (3.10)

is a good definition! – called Weyl quantisation.

Remarks:

• A(p, x) is called the (Weyl-)symbol of Â
Notation: symb[Â](p, x) = A(p, x)

• If the symbol A(p, x) satisfies certain conditions then Â is a Pseudo-Differential-
Operator (ψDO) of a certain type.

Now we would like to have a more explicit formula (without formal operators in the expo-
nent), i.e. let’s calculate (Âψ)(z) in the Schrödinger representation. Notice that(

e−
~
i
ξx̂ψ

)
(z) = e−

~
i
ξzψ(z) and(

e−
~
i
yp̂ψ

)
(z) = ψ(z − y)

(3.11)
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(for the latter expand the exponential, use p̂ = ~
i
∇ and you find the Taylor expansion of

ψ).

Using these relations along with (3.7) we find

(Âψ)(z) =
1

(2π~)2d

∫
Rd

∫
Rd

∫
Rd

∫
Rd

A(p, x) e
i
~ (ξx+yp+ ξy

2
) e−

i
~ ξz ψ(z − y) ddξ ddy ddp ddx .

(3.12)
The ξ-integral yields δ(x+ y

2
− z), which we use in order to perform the x-integral,

(Âψ)(z) =
1

(2π~)d

∫
Rd

∫
Rd

A(p, z − y
2
) e

i
~py ψ(z − y) ddp ddy (3.13)

and changing variables from y to x = z − y we obtain

(Âψ)(z) =
1

(2π~)d

∫
Rd

∫
Rd

A

(
p,
z + x

2

)
e

i
~p(z−x) ψ(x) ddp ddy , (3.14)

which is usually referred to as the definition of Weyl quantisation.

Now assume that Â has a representation with integral kernel KÂ(x, y), i.e.

(Âψ)(x) =

∫
Rd

KÂ(x, y)ψ(y) ddy . (3.15)

By comparing with (3.14) we can read off the identity

KÂ(x, y) =
1

(2π~)d

∫
Rd

A

(
p,
y + x

2

)
e

i
~p(x−y)ddp . (3.16)

In order to obtain the inverse relation, introduce the variables X = x+y
2

and z = x− y,

KÂ(X + z
2
, X − z

2
) =

1

(2π~)d

∫
Rd

A (p,X) e
i
~pzddp (3.17)

and invert the Fourier transform,

symb[Â] ≡ A(P,X) =

∫
Rd

KÂ(X + z
2
, X − z

2
) e−

i
~Pz ddz (3.18)

Now we can go back and forth between operators (kernels) and symbols (which live on
phase space) and with equations (3.14), (3.16) and (3.18) we have rigorous and convenient
definitions at hand.

7



3.1 The Wigner Function

Now that we have a phase space representation for quantum observables let us see if can
also represent the wave function on phase space. To this end consider the operator P̂ψ
which projects onto the state ψ,

(P̂ψφ)(x) := ψ(x)

∫
Rd

ψ(y)φ(y) ddy (3.19)

(or P̂ψ = |ψ〉〈ψ| in Dirac bracket notation). Its integral kernel is obviously given by

ψ(x)ψ(y), and its symbol is called Wigner function,

W [ψ](p, x) : = symb[P̂ψ](p, x)

=

∫
Rd

ψ(x+ z
2
)ψ(x− z

2
) e−

i
~pz ddz .

(3.20)

The Winger function is often referred to as a quasi-probability density (it’s not a probability
density because it can take negative or even complex values) since it’s marginals (divided
by (2π~)d),

1

(2π~)d

∫
Rd

W [ψ](p, x) ddp = |ψ(x)|2 (3.21)

and
1

(2π~)d

∫
Rd

W [ψ](p, x) ddx = |g(p)|2 , (3.22)

are probability densities for position and momentum. (Here g(p) denotes the normalised
Fourier transform of ψ, g(p) := (2π~)−d/2 ψ̃(p).)

Remark: In the same way one can also define the Wigner function for an arbitrary density
operator D̂ =

∑
n pn|ψn〉〈ψn| and the Wigner transform of two states, say ψ and φ, i.e. the Weyl

symbol of the kernel ψ(x)φ(y).

It turns out that we can calculate expectation values using Wigner function and Weyl
symbol as follows,

〈ψ, Âψ〉 =
1

(2π~)d

∫
Rd

∫
Rd

W [ψ](p, x)A(p, x) ddp ddx . (3.23)

8



Proof:

r.h.s =
1

(2π~)d

∫
Rd

∫
Rd

∫
Rd

ψ(x+ z
2
)ψ(x− z

2
) e−

i
~ zp ddz

∫
Rd

KÂ(x+ z′

2
, x− z′

2
) e−

i
~ z

′p ddz′ ddp ddx

p-integral yields δ(z + z′), perform z′-integral

=

∫
Rd

∫
Rd

ψ(x+ z
2
)ψ(x− z

2
)KÂ(x− z

2
, x+ z

2
) ddx ddz

change variables to y = x− z
2
, y′ = x+ z

2

=

∫
Rd

∫
Rd

ψ(y)KÂ(y, y′)ψ(y′) ddy ddy′

=

∫
Rd

ψ(y) (Âψ)(y) ddy = 〈ψ, Âψ〉
�

(3.24)

Altogether everything looks like classical mechanics now (we have a phase space “density”
describing the state of the system and a phase space function describing an observable) –
so where’s quantum mechanics?

Cave: Symbols can depend on ~!

Recall: Op[xp] = x̂p̂+ ~
2i

⇒ xp = symb[x̂p̂+ ~
2i
] = symb[x̂p̂] + ~

2i

⇒ symb[x̂p̂] = xp− ~
2i

In the limit ~ → 0 we obtain what we may have expected. This leads us to the following
definition.

Definition: We say that Â = Op[A] is a semiclassical ψDO (with classical symbol) if it
has an asymptotic expansion of the form

A(p, x) ∼ ~a
∑
n≥0

An(p, x) ~n , ~ → 0 (3.25)

with a ∈ R and where the An(p, x) do not depend on ~.

A0(p, x) is called the principal symbol of Â.
(A1(p, x) is called the sub-principal symbol of Â.)

The principal symbol A0(p, x) is the classical observable
corresponding to the quantum observable Â.

3.2 The Moyal Product

We know how to multiply classical and quantum observables (operators). In the first case
multiplication is commutative whereas in the latter case in general it is not. Thus it is
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interesting to see how the symbol of ÂB̂ relates to the symbols of Â and B̂.

For convenience introduce also the Fourier transform Ã of A = symb[Â] by

A(p, x) =

∫
Rd

∫
Rd

Ã(α, β) e
i
~ (pα+xβ) ddα ddβ . (3.26)

Inserting into (3.16) we obtain

KÂ(x, y) =
1

(2π~)d

∫
Rd

∫
Rd

∫
Rd

Ã(α, β) e
i
~ [p(x−y+α)+x+y

2
β] ddp ddα ddβ , (3.27)

where the p-integral yields δ(x− y + α), which we use in order to perform the α-integral.
Then

KÂ(x, y) =

∫
Rd

Ã(y − x, β) e
i
~

x+y
2
βddβ (3.28)

is yet another way to express the relation between operators (kernels) and symbols.

Now

KÂB̂(x, y) =

∫
Rd

KÂ(x, z)KB̂(z, y) ddz (3.29)

symb[ÂB̂](p, x) =

∫
Rd

∫
Rd

KÂ(x+ z
2
, y)KB̂(y, x− z

2
) e−

i
~pz ddy ddz

=

∫
Rd

∫
Rd

∫
Rd

∫
Rd

Ã(y − x− z
2
, α) e

i
~α

x+y+z/2
2

B̃(−y + x− z
2
, β) e

i
~β

x+y−z/2
2 e−

i
~pz ddy ddz ddα ddβ

change variables from y, z to X = y − x+ z
2

and Y = −y + x− z
2
,

i.e. z = −(X + Y ), y =
X − Y

2
+ x

=

∫
Rd

∫
Rd

∫
Rd

∫
Rd

Ã(X,α) B̃(Y, β) e
i
~α

2x−Y
2 e

i
~β

2x+Y
2 e

i
~p(X+Y ) ddX ddY ddα ddβ .

(3.30)

The total argument of the exponentials in the last expression is

i

~

[
x(α+ β) + p(X + Y )︸ ︷︷ ︸

(i)

−1
2
αY + 1

2
βX︸ ︷︷ ︸

(ii)

]
(3.31)

• The terms (i) will give us Fourier transforms (recall that we integrate over α, β,X
and Y ) replacing Ã(X,α) and B̃(Y, β) by A(p, x) and B(p, x) (same arguments!).
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• But we also have the terms (ii). For those we expand the exponential and then each
multiplication with α, β (or X, Y ) will give rise to a derivative in the corresponding
Fourier variable, x (or p), cf. (2.11).

Hence,

symb[ÂB̂](p, x) =
∞∑
n=0

1

n!

∫
Rd

∫
Rd

∫
Rd

∫
Rd

e
i
~ [x(α+β)+p(X+Y )]

Ã(X,α)

[
i

2~
(Xβ − αY )

]n
B̃(Y, β) ddX ddY ddα ddβ

=
∞∑
n=0

1

n!
A(p, x)

[
i

2~

(
~
i

←
∇p

~
i

→
∇x −

~
i

←
∇x

~
i

→
∇p

)]n
B(p, x)

(3.32)

where the arrows indicate that the derivatives act only on functions standing to the left or
right, respectively, of the corresponding differential operator. (Multiplication with, say, X
will only give rise to differentiation of A with respect to p but not of B, since B̃ did not
contain any X.)

Finally, we have obtained the following asymptotic expansion of the symbol of the ÂB̂:

symb[ÂB̂](p, x) =
∞∑
n=0

1

n!
A(p, x)

[
~
2i

(←
∇p

→
∇x −

←
∇x

→
∇p

)]n
B(p, x)

= A(p, x)B(p, x) +
~
2i

(
∇pA∇xB −∇xA∇pB

)︸ ︷︷ ︸
{A,B}

(p, x) +O(~2) ,
(3.33)

i.e. the leading order term is just the product of the two symbols as expected, but there are
~-corrections. In particular the Poisson bracket shows up in next-to-leading order. Equa-
tion (3.33) (first line) is known as the Moyal product. For the symbol of the commutator
this implies

symb
[
[Â, B̂]

]
=

~
i
{A,B}+O(~2) , (3.34)

or, even more meaningful,

symb
[
[Â, B̂]

]
=

~
i
{A0, B0}+O(~2) (3.35)

(for A = A0 +O(~) and B analogous).
⇒ The principal symbol of the commutator is the Poisson bracket of the principal symbols.
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4 Time Evolution

4.1 Egorov’s Theorem

In the Heisenberg picture operators are time-dependent and obey (cf. section 2)

˙̂
A(t) = − i

~
[Ĥ, Â(t)] . (2.6′)

We denote the symbol of Â(t) by A(p, x, t), i.e.

A(p, x, t) = symb[Â(t)](p, x) , (4.1)

which is related to the previous notation by A(p, x) = symb[Â](p, x) = A(p, x, 0). One can
show that if Â is a semiclassical ψDO then Â(t) also has a classical symbol, i.e

A(p, x, t) ∼ ~a
(
A0(p, x, t) + ~A1(p, x, t) +O(~2)

)
. (4.2)

Let us determine the time evolution of symbols by calculating the symbol of both sides of
equation (2.6):

l.h.s = symb
[

˙̂
A(t)

]
(p, x) =

∂

∂t
symb[Â(t)](p, x) ∼ ~a

∂A0

∂t
(p, x, t)

(
1 +O(~)

)
, (4.3)

r.h.s = symb

[
i

~
[Ĥ, Â(t)]

]
(p, x) = ~a{H0, A0}(p, x, t)

(
1 +O(~)

)
. (4.4)

Solving the equation order by order in ~, in leading order we find

∂A0

∂t
(p, x, t) = {H0, A0}(p, x, t) , (4.5)

which is the classical equation of motion (1.4). Thus, we conclude that the principal symbol
of the time evolved operator is given by the classical time evolution of the principal symbol
of the operator at time zero, i.e

A0(p, x, t) = A0(φ
t(p, x)) ≡ A0(φ

t(p, x), 0) , (4.6)

or, equivalently,

A(p, x, t) = ~aA0(φ
t(p, x))

(
1 +O(~)

)
, (4.7)

This statement is known as Egorov’s theorem.

4.2 The Ehrenfest Time

Egorov’s theorem (4.7) holds for fixed time t in the formal limit ~ → 0. If one wants to
control time evolution for fixed ~ and t one needs to know the time dependence of the
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O(~)-term in (4.7), i.e. one has to investigate the simultaneous limits ~ → 0 and t→∞.
Precisely one would like to know how fast t may go to infinity (as a function of ~) such
that a statement like (4.7) is still true.

We will not derive this relation here but only do a little calculation for getting an impression
and state the result.

Consider the symbol of the time evolved observable Â(t) at phase space point (p′, x′).
Egorov’s theorem tells us that

A(p′, x′, t) = ~aA0(φ
t(p′, x′))

(
1 +O(~)

)
. (4.8)

If we choose (p′, x′) to be very close to (p, x), more precisely ||(p′, x′)− (p, x)|| = O(~) then
we can expand the symbol A(p′, x′) about (p′, x′) = (p, x) and absorb everything but the
leading term into the sub-principal symbol (which doesn’t show up in Egorov’s theorem!).
Applying Egorov once more then yields

A(p′, x′, t) = ~aA0(φ
t(p, x))

(
1 +O(~)

)
. (4.9)

The difference between (4.8) and (4.9) is in the O(~)-term, since we chose ||(p′, x′) −
(p, x)|| = O(~), but as a function of time has to grow like the difference ||φt(p′, x′) −
φt(p, x)||. For integrable (regular) systems the distance between neighbouring trajectories
grows at most polynomially with time. If the dynamics, however, are chaotic (hyperbolic)
then this distance can grow exponentially in time, i.e.

||φt(p′, x′)− φt(p, x)|| ∼ ||(p′, x′)− (p, x)||eλt (4.10)

(“sensitive dependence on initial conditions” – “butterfly effect”) where λ is called Lya-
punov exponent.

Thus, for chaotic systems we have found an O(~)-correction which blows up exponentially
in time and thus – if we want the error to remain small – tmay at most grow logarithmically
in 1/~. This time up to which Egorov’s theorem holds is known as the Ehrenfest time,

tE :=
1

λ
log

1

~
, (4.11)

or “log-breaking-time”.

In the physics literature the observation that semiclassical time evolution (for observables
as discussed here or, more common, similar statements for wave packet dynamics or ex-
pectation values) can hold only up to the Ehrenfest time tE was made already in the late
1970s [9, 10]. Rigorous proofs were only given about twenty years later, see e.g. [11, 12],
and (semiclassical) estimates for the time evolution on larger time scales than tE are an
active area of research, see e.g. [13, 14] for some recent developments.
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