Department of Mathematics

JProf. Dr. Angela Capel Cuevas

Contact Information

JProf. Dr. Angela Capel Cuevas
Universität Tübingen
Fachbereich Mathematik
AB Mathematische Physik
Auf der Morgenstelle 10
72076 Tübingen

Raum: C4 P34
Tel: +49 (0)7071 29 78672
Fax: +49 (0)7071 29 5036
E-Mail: angela.capel at

Current Courses

Past Courses

Winter Term 2022/23

Summer Term 2022

Winter Term 2021/22

Research Interests and Projects

My research interests mainly lie at the interface between Quantum Information Theory and Quantum Many-Body Systems. In general, I focus on applying tools from the mathematical fields of Analysis, Geometry and Probability to study problems arising in Quantum Information Theory. Moreover, a large part of my research deals with the Markovian description of open quantum systems and, in particular, with their study via Quantum (non-commutative) Functional Inequalities. 

More specifically, I am deeply interested in (but not restricted to) the following research topics:

  • Quantum Information Theory

  • Quantum Many-Body Systems

  • Quantum Dissipative Evolutions

  • Quantum Functional Inequalities

  • Entropic Inequalities


  • Y. Jia and Á. Capel,  A generic quantum Wielandt's inequality, preprint, 2023,

    arXiv: 2301.08241

  • A. Bluhm, Á. Capel, P. Gondolf and A. Pérez-HernándezContinuity of quantum entropic quantities via almost convexity, preprint, 2022,

    arXiv: 2208.00922

  • I. Bardet, Á. Capel, L. Gao, A. Lucia, D. Pérez-García and C. Rouzé,  Entropy decay for Davies semigroups of a one dimensional quantum lattice, preprint, 2021,

    arXiv: 2112.00601

  • I. Bardet, Á. Capel, L. Gao, A. Lucia, D. Pérez-García and C. Rouzé,  Rapid thermalization of spin chain commuting Hamiltonian, Physical Review Letters, 130, 060401, 2023,

    DOI: 10.1103/PhysRevLett.130.060401       arXiv: 2112.00593

  • A. Bluhm, Á. Capel and A. Pérez-Hernández,  Exponential decay of mutual information for Gibbs states of local HamiltoniansQuantum, 6, 650, 2022,

    DOI: 10.22331/q-2022-02-10-650        arXiv: 2104.04419

  • A. Bluhm, Á. Capel and A. Pérez-Hernández,  Weak quasi-factorization for the Belavkin Staszewski relative entropy,  2021 IEEE International Symposium on Information Theory (ISIT), 118-123, 2021,

    DOI: 10.1109/ISIT45174.2021.9517893       arXiv: 2101.10312

  • Á. Capel and Y. Jia,  Comment on “Generators of matrix algebras in dimension 2 and 3"preprint, 2021,

    arXiv: 2101.07159

  • Á. Capel, C. Rouzé and D. Stilck França,  The modified logarithmic Sobolev inequality for quantum spin systems: classical and commuting nearest neighbour interactions, Communications in Mathematical Physics (to appear), 2022,

    arXiv: 2009.11817

  • Á. Capel and J. Ocáriz,  Approximation with Neural Networks in Variable Lebesgue Spaces,  preprint, 2020,

    arXiv: 2007.04166

  • I. Bardet, Á. Capel and C. Rouzé,  Approximate tensorization of the relative entropy for noncommuting conditional expectations, Annales Henri Poincaré, 23, 101-140, 2022,

    DOI: 10.1007/s00023-021-01088-3       arXiv: 2001.07981   

  • I. Bardet, Á. Capel, A. Lucia, D. Pérez-García and C. Rouzé,  On the modified logarithmic Sobolev inequality for the heat-bath dynamics for 1D systems, Journal of Mathematical Physics, 62, 061901, 2021,

    DOI: 10.1063/1.5142186       arXiv: 1908.09004

  • A. Bluhm and Á. Capel, A strengthened data processing inequality for the Belavkin-Staszewski relative entropy, Reviews in Mathematical  Physics, 32(02), 2050005, 2020,

    DOI: 10.1142/S0129055X20500051       arXiv: 1904.10768

  • Á. Capel, A. Lucia and D. Pérez-García, Quantum Conditional Relative Entropy and Quasi Factorization of the Relative Entropy, Journal of Physics A: Mathematical and Theoretical, 51, 484001, 2018,

    DOI: 10.1088/1751-8121/aae4cf       arXiv: 1804.09525

  • Á. Capel, A. Lucia and D. Pérez-García, Superadditivity of Quantum Relative Entropy for General States, IEEE Transactions on Information Theory, 64 (7), 4758-4765, 2018,

    DOI: 10.1109/TIT.2017.2772800       arXiv: 1705.03521

  • Á. Capel, M. Martín and J. Merí, Numerical radius attaining compact linear operators, Journal of Mathematical Analysis and Applications, 445, 1258-1266, 2017,

    DOI: 10.1016/j.jmaa.2016.02.074       arXiv: 1602.07084