Logo Universitaet Teubingen

Prof. Dr. Stefan Teufel

fotoTeufelKontakt / Contact Information

Prof. Dr. Stefan Teufel
Universität Tübingen
Fachbereich Mathematik
AB Mathematische Physik
Auf der Morgenstelle 10
72076 Tübingen

Raum: C4 A39
Tel: +49 (0)7071 29 74315
Fax: +49 (0)7071 29 5036
E-Mail: stefan.teufel at uni-tuebingen.de

 

Lehrveranstaltungen / Current Course

    Sommersemester 2019

      Archiv ab Sommersemester 2015

      Informationen zum neuen Masterstudiengang Mathematical Physics.

      Forschungsinteressen und Projekte / Research Interests and Projekts

      GRK-Logo

          Forschungsinteressen

          Bücher / Books

          D. Grieser, S. Teufel, A. Vasy (eds.)
          Microlocal methods in mathematical physics and global analysis
          Trends in Mathematics, Birkhaeuser, 2013.
          [ Birkhaeuser Webpage ]

          Microlocal Methods.jpg

          D. Dürr, S. Teufel
          Bohmian Mechanics: The Physics and Mathematics of Quantum Theory
          Springer Verlag, 2009.
          [ A Review of the book by Jean Bricmont. ] [ Springer Webpage]

          Bohmian Mechanics.jpg

          S. Teufel
          Adiabatic perturbation theory in quantum dynamics
          Lecture Notes in Mathematics 1821.
          Springer-Verlag, Berlin, Heidelberg, New York, 2003.
          [ Springer Webpage ]

          Adiabatic Perturbation.jpg

          Wissenschaftliche Veröffentlichungen / Publications

          D. Dürr, S. Goldstein, S. Teufel, R. Tumulka, N. Zanghi
          Bohmian trajectories for Hamiltonians with interior-boundary conditions
          To appear in Journal of Statistical Physics
          [arXiv:1809.10235]

          J. Schmidt, S. Teufel, R. Tumulka
          Interior-boundary conditions for many-body Diracoperators and codimension-1 boundaries
          Journal of Physics A: Math. Theor. 52, 295202 (2019)
          [JPA, arXiv:1811.02947]

          E. Matyus, S. Teufel
          Effective non-adiabatic Hamiltonians for the quantum nuclear motion over coupled electronic states
          Journal of Chemical Physics 151, 014113 (2019)
          [JCP, arXiv:1904.00042]

          L. Boßmann, S. Teufel
          Derivation of the 1d Gross-Pitaevskii equation from the 3d quantum many-body dynamics of strongly confined bosons
          Annales Henri Poincare 20, 1003-1049 (2019)
          [AHP, arXiv:1803.11026]

          S. Haag, J. Lampart, S. Teufel
          Quantum waveguides with magnetic fields
          Reviews of Mathematical Physics 31, 1950025 (2019)
          [RMP, arXiv:1710.01518]

          S. Teufel
          Non-equilibrium almost-stationary states and linear response for gapped quantum systems
          Communications in Mathematical Physics (2019)
          [SpringerarXiv:1708.03581]

          D. Monaco, S. Teufel
          Adiabatic currents for interacting electrons on a lattice
          Reviews of Mathematical Physics 31, 1950009 (2019)
          [RMParXiv:1707.01852]

          J. Lampart, J. Schmidt, S. Teufel, R. Tumulka
          Particle creation at a point source by means of interior boundary conditions
          Mathematical Physics, Analysis and Geometry 21, 12 (2018).
          [arXiv:1703.04476]

          D. Monaco, G. Panati, A. Pisante, S. Teufel
          The localization dichotomy for gapped periodic quantum systems
          [arXiv:1612.09557]

          D. Monaco, G. Panati, A. Pisante, S. Teufel
          Optimal decay of Wannier functions in Chern and quantum Hall insulators
          Communications in Mathematical Physics 359, 61-100 (2018).
          [SpringerarXiv:1612.09552]

          H. Cornean, D. Monaco, S. Teufel
          Wannier functions and Z_2 invariants in time-reversal symmetric topological insulators
          Reviews in Mathematical Physics 29, 1730001 (2017).
          [arXiv:1603.06752]

          J. von Keler, S. Teufel
          The NLS limit for bosons in a quantum waveguide
          Annales Henri Poincare 17, 3321-3360 (2016).
          [Springer, arXiv:1510.03243]

          S. Teufel, R. Tumulka
          Avoiding Ultraviolet Divergence by Means of Interior-Boundary Conditions
          [arXiv:1506.00497]

          S. Teufel, R. Tumulka
          New Type of Hamiltonians Without Ultraviolet Divergence for Quantum Field Theories
          [arXiv:1505.04847]

          S. Haag, J. Lampart, S. Teufel
          Generalised Quantum Waveguides 
          Annales Henri Poincare 16, 2535-2568 (2015). 
          [Springer, arXiv:1402.1067]

          J. Lampart, S. Teufel
          The adiabatic limit of Schrödinger operators on fibre bundles
          Mathematische Annalen 367, 1647-1683 (2017).
          [Springer, arXiv:1402.0382]

          Zeige alle...