Fachbereich Mathematik


Prof. Dr. Carla Cederbaum

Forschungsinteressen / Research interests

Mathematische Relativitätstheorie / Mathematical General Relativity
Geometrische Analysis / Geometric Analysis
Differentialgeometrie / Differential Geometry


Aktuelles / New

FHST-Seminar on Geometry and Analysis in Freiburg on Jan 24 2020

Minisymposium Mathematical Perspectives on General Relativity auf der DMV-Tagung

Arbeitsgruppe / Group

Dr. Edward Bryden, Postdoc

Dr. Armando Cabrera Pacheco, Postdoc (Carl Zeiss Foundation)

Dr. Melanie Graf, Postdoc

Lisa Hilken, Doktorandin

Sophia Jahns, Doktorandin

Anna Sancassani, Doktorandin

Markus Wolff, Doktorand

Alumni of the Group

Dr. Leon Escobar Diaz, Postdoc (Teach@Tübingen, Bridging Fund/Excellence Initiative), now: Universidad del Valle, Colombia , email leon.escobar*at*correounivalle.edu.co

Forschungsziele / Research goals

The main goal of my research is to obtain a deeper understanding of geometric, analytic, and physical properties of initial data sets with prescribed asymptotic behavior in General Relativity. Many of the questions arising in this context are of independent interest from a (semi-)Riemannian or Geometric Analysis perspective.

At the moment, I work towards obtaining a consistent geometric definition of center of mass for asymptotically Euclidean/hyperbolic and otherwise completely general initial data sets of non-zero mass (collaborators: Anna Sakovich, Julien Cortier, and Christopher Nerz). Our work extends and/or reinterprets work on CMC-foliations by Huisken--Yau (as. Euclidean) and by Neves--Tian (as. hyperbolic), respectively.

I am also interested in characterizing the geometric and topological properties of photon spheres and photon regions in static and stationary asymptotically flat spacetimes (with Gregory Galloway and with Sophia Jahns). In the static setting, we have proved photon sphere uniqueness theorems in the context of vacuum and electro-vacuum solutions of the Einstein equations. These have implications for the static n-body problem. Our results have been generalized to various matter fields (Yazadjiev, Yazadjiev--Lazov, etc.).

Fruthermore, I am fascinated by Bartnik's quasi-local mass and static metric extension conjectures and work on several aspects of these conjectures (with Armando Cabrera Pacheco, Stephen McCormick, and Pengzi Miao and with Oliver Rinne and Markus Strehlau).

In my thesis, I studied geometrostatic systems, i.e. static vacuum asymptotically flat solutions of the Einstein equations. My aim was to obtain a deeper understanding of their asymptotic analysis and to gain more insight into their physical interpretation (mass, center of mass, behaviour of test bodies, Newtonian limit à la Ehlers, etc.). In particular, I proved consistency results showing that certain physical properties like relativistic mass and center of mass converge to their Newtonian counterparts. I am now working towards extending my techniques to more general settings.

Together with Marcus Ansorg and Jörg Hennig, I have studied a geometric inequality between horizon area and angular momentum for stationary and axisymmetric black hole solutions. Our work has interesting applications in proving non-existence of multiple black hole horizons (Hennig--Neugebauer). It has been extended to general axisymmetric spacetimes containing (marginally) stable marginally outer trapped surfaces (Gabach-Clément, Jaramillo). Geometric inequalities of this type are attracting more and more attention and many different techniques have been introduced to the field (e.g. by Sergio Dain).


Wissenschaftliche Veröffentlichungen / Publications

  1. Carla Cederbaum, Gregory J. Galloway, Photon surfaces with equipotential time-slices [arxiv:1910.04220]
  2. Carla Cederbaum, Oliver Rinne, Markus Strehlau, A flow approach to Bartnik's static metric extension conjecture in axisymmetry [arxiv:1904.11040], accepted in Pure and Applied Mathematics Quarterly
  3. Armando J. Cabrera Pacheco, Carla Cederbaum, A survey on extensions of Riemannian manifolds and Bartnik mass estimates [arxiv:1904.05830], accepted in Memorias de la reunión de Matemáticos Mexicanos en el Mundo 2018, Contemporary Mathematics series, AMS
  4. Carla Cederbaum, Sophia Jahns, Geometry and topology of the Kerr photon region in the phase space, Gen Relativ Gravit (2019) 51: 79 [arxiv:1904.00916, article, see also simplification]
  5. Aghil Alaee, Armando J. Cabrera Pacheco, Carla Cederbaum, Asymptotically flat extensions with charge [arxiv:1903.09014], accepted in Advances in Theoretical and Mathematical Physics
  6. Carla Cederbaum, Anna Sakovich, On center of mass and foliations by constant spacetime mean curvature surfaces for isolated systems in General Relativity [arxiv:1901.00028]
  7. Armando J. Cabrera Pacheco, Carla Cederbaum, Stephen McCormick, Asymptotically hyperbolic extensions and an analogue of the Bartnik mass, J. Geom. Phys. 132 (2018), pp. 338–357 [access, preprint]
  8. Carla Cederbaum, A geometric boundary value problem related to the static equations in General Relativity, Oberwolfach report (2017) [pdf]
  9. Armando J. Cabrera Pacheco, Carla Cederbaum, Stephen McCormick, Pengzi Miao, Asymptotically flat extensions of CMC Bartnik dataClass. Quantum Grav. 34 (2017), pp. 105001 [access, preprint]
  10. Carla Cederbaum, Photon sphere uniqueness and the static n-body problem, Oberwolfach report (2015) [pdf]
  11. Carla Cederbaum, Gregory J. Galloway, Uniqueness of photon spheres in electro-vacuum spacetimes, Class. Quantum Grav. 33 no. 7 (2016), pp. 075006 [access, preprint]
  12. Carla Cederbaum, Gregory J. Galloway, Uniqueness of photon spheres via positive mass rigidity, Commun. Anal. Geom. 25 no. 2 (2017), pp. 303–320 [accesspreprint]
  13. Carla Cederbaum, Julien Cortier, Anna Sakovich, On the center of mass of asymptotically hyperbolic initial data sets, Ann. Henri Poincaré 17 no. 6 (2016), pp.1505–1528 [access, preprint]
  14. Carla Cederbaum, Uniqueness of photon spheres in static vacuum asymptotically flat spacetimes, Contemp. Math 667 (2015): Complex Analysis & Dynamical Systems VI, pp. 86–99 [paper, preprint]
  15. Carla Cederbaum, Christopher Nerz, Explicit Riemannian manifolds with unexpectedly behaving center of mass, Ann. Henri Poincaré 16 no. 7 (2015), pp. 1609–1631 [access, preprint]
  16. Carla Cederbaum, Level sets of the lapse function in static GR, D. Puetzfeld et al. (eds.), Equations of Motion in Relativistic Gravity, Fundamental Theories of Physics 179, Springer, 2015 [preprintposter]
  17. Carla Cederbaum, Geometrostatics: the geometry of static space-times, Conference Proceedings "Relativity and Gravitation -- 100 years after Einstein in Prague" (2012) [preprint]
  18. Carla Cederbaum,The Geometry of Static Spacetimes: Geometrostatics, Oberwolfach report (2012) [pdf]
  19. Carla Cederbaum, The Newtonian Limit of Geometrostatics, PhD thesis (2011) [pdf]
  20. Marcus Ansorg, Jörg Hennig, Carla Cederbaum, Universal properties of distorted Kerr-Newman black holes, Gen. Relativ. Gravit. 43 (2011), pp. 1205 [accesspreprint]
  21. Jörg Hennig, Carla Cederbaum, Marcus Ansorg, A universal inequality for axisymmetric and stationary black holes with surrounding matter in the Einstein-Maxwell theory, Comm. Math. Phys. 293 no. 2 (2010), pp. 449–467 [accesspreprint]
  22. Jörg Hennig, Marcus Ansorg, Carla Cederbaum, A universal inequality between the angular momentum and horizon area for axisymmetric and stationary black holes with surrounding matter, Classical Quantum Gravity 25 no. 16 (2008), pp. 162002 [access, preprint]
  23. Carla Cederbaum, Construction of Discrete Surfaces, Conformal Reparametrisation, and Applications to the Gradient Flow of the Willmore Functional [Diploma thesis]
  24. Carla Cederbaum, Subharmonic Methods in Banach Algebra Theory [Part III essay]

      Ausgewählte Vorträge / Selected invited talks

      1. On CMC-foliations of asymptotically flat manifolds, DMV-Tagung, Sektion Differentialgeometrie, globale Analysis und Anwendungen, Karlsruhe, 2019
      2. Static black hole uniqueness theorems, ICTP School on Geometry and Gravity, Trieste, 2019 [poster, videos]
      3. On CMC-foliations of asymptotically flat manifolds, Geometric Analysis and General Relativity. A conference in honour of Gerhard Huisken, ETH Zürich, 2019
      4. On special hypersurfaces of the Schwarzschild spacetime and related uniqueness theorems, Geometric Analysis meets Geometric Topology, Heidelberg, 2019
      5. Wo liegt der Schwerpunkt eines Sterns -- und was hat das mit Mathematik zu tun?, Open Salzburg Mathematics Colloquium, 2019 [poster]
      6. On special hypersurfaces of the Schwarzschild spacetime and related uniqueness theorems, A Celebration of Mathematical Relativity in Miami, 2018 [poster]
      7. On foliations related to the center of mass in General Relativity, International Congress on Mathematical Physics, Montréal, 2018
      8. On extensions of CMC Bartnik data, Relativity Seminar, Vienna, 2018
      9. On the center of mass of asymptotically hyperbolic initial data sets, Asymptotically hyperbolic manifolds, Banff Research Station (BIRS), 2018 [video]
      10. On foliations related to the center of mass in General Relativity, Brussels-London geometry seminar, 2018
      11. On foliations related to the center of mass in General Relativity, Field equations on Lorentzian spacetimes, Hamburg, 2018 [poster]
      12. AWM Distinguished Speaker series, University of Oregon, 2018
      13. Rigidity properties of the Schwarzschild manifold in all dimensions, Advances in General Relativity, Erwin-Schrödinger-Institut, Wien, 2017 [conference website]
      14. A geometric boundary value problem related to the static equations in General Relativity, Advances in Geometric Analysis, ETH Zürich, 2017 [conference website]
      15. Service Learning im Lehramtsstudium Mathematik, mit Dr. Stefan Keppeler, Arbeitsgemeinschaft Mathematik zwischen Schule und Hochschule, Universität Tübingen, 2016 [AnkündigungFolienBlog]
      16. On foliations related to the center of mass, Conference in Mathematical General Relativity, Tsinghua Sanya International Mathematics Forum, 2016 [poster]
      17. Mathematik lehren -- oder lehren, Mathematik zu lernen (und lehren)? Kolloquium über Mathematik, Informatik und Unterricht, ETH Zürich, 2015 [AnkündigungFolien]
      18. Scientific (r)evolution: a mathematical perspective, Gravity and Geometry: Centenary Perspectives on General Relativity, Rotman Institute of Philosophy, London, Ontario, 2015 [posterconference website]
      19. From Schwarzschild to General Relativity: modeling physical phenomena with the help of geometry, New directions in Mathematical Physics and beyond, Jena, 2015 [conference website]
      20. Mass in Newtonian gravity and general relativity (Colloquium delivered at Monash University, 2014) [slides]
      21. The geometry of static spacetimes in General Relativity (Delivered at Stanford University, 2013) [slides]
      22. The geometry of static spacetimes in General Relativity (Delivered at the Mathematical Sciences Research Institute MSRI 2013) [video]
      23. The Newtonian limit of geometrostatics (Delivered at the Centre International the Rencontres Mathématiques CIRM 2011) [video]
      24. From Newton to Einstein: A guided tour through space and time (Delivered at Geometry Festival @ Duke University 2012; Junior Colloquium @ University of Tennessee, Knoxville 2012; Undergraduate Lecture Series @ CUNY 2012; Cross program lecture @ Park City Mathematics Institute PCMI 2013; undergraduate lecture @ Lewis & Clark College 2013, Heidelberger Life Science Lab 2013 etc.) [videoslidesFolien deutsch]